

PYTHON PROGRAMMING

I B.TECH II SEM FOR

CSE

(JNTUK)

(R20)

HUMANITIES & BASIC SCIENCES DEPARTMENT

V S M COLLEGE OF ENGINEERING

RAMCHANDRAPURAM

 E.G. Dt. - 533255

R-20 Syllabus for CSE, JNTUK w. e. f. 2020 – 21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year – II Semester
L T P C

3 0 0 3

PYTHON PROGRAMMING

Course Objectives:

The Objectives of Python Programming are

 To learn about Python programming language syntax, semantics, and the runtime

environment

 To be familiarized with universal computer programming concepts like data types,

containers

 To be familiarized with general computer programming concepts like conditional

execution, loops & functions

 To be familiarized with general coding techniques and object-oriented programming

Course Outcomes:

 Develop essential programming skills in computer programming concepts like data

types, containers

 Apply the basics of programming in the Python language

 Solve coding tasks related conditional execution, loops

 Solve coding tasks related to the fundamental notions and techniques used in object-

oriented programming

UNIT I

Introduction: Introduction to Python, Program Development Cycle, Input, Processing, and

Output, Displaying Output with the Print Function, Comments, Variables, Reading Input

from the Keyboard, Performing Calculations, Operators. Type conversions, Expressions,

More about Data Output.

Data Types, and Expression: Strings Assignment, and Comment, Numeric Data Types and

Character Sets, Using functions and Modules.

Decision Structures and Boolean Logic: if, if-else, if-elif-else Statements, Nested Decision

Structures, Comparing Strings, Logical Operators, Boolean Variables. Repetition Structures:

Introduction, while loop, for loop, Calculating a Running Total, Input Validation Loops,

Nested Loops.

UNIT II

Control Statement: Definite iteration for Loop Formatting Text for output, Selection if and if

else Statement Conditional Iteration The While Loop

Strings and Text Files: Accessing Character and Substring in Strings, Data Encryption,

Strings and Number Systems, String Methods Text Files.

UNIT III

List and Dictionaries: Lists, Defining Simple Functions, Dictionaries

Design with Function: Functions as Abstraction Mechanisms, Problem Solving with Top

Down Design, Design with Recursive Functions, Case Study Gathering Information from a

File System, Managing a Program’s Namespace, Higher Order Function.

Modules: Modules, Standard Modules, Packages.

R-20 Syllabus for CSE, JNTUK w. e. f. 2020 – 21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT IV

File Operations: Reading config files in python, Writing log files in python, Understanding

read functions, read(), readline() and readlines(), Understanding write functions, write() and

writelines(), Manipulating file pointer using seek, Programming using file operations

Object Oriented Programming: Concept of class, object and instances, Constructor, class

attributes and destructors, Real time use of class in live projects, Inheritance , overlapping

and overloading operators, Adding and retrieving dynamic attributes of classes, Programming

using Oops support

Design with Classes: Objects and Classes, Data modeling Examples, Case Study An ATM,

Structuring Classes with Inheritance and Polymorphism

UNIT V

Errors and Exceptions: Syntax Errors, Exceptions, Handling Exceptions, Raising Exceptions,

User-defined Exceptions, Defining Clean-up Actions, Redefined Clean-up Actions.

Graphical User Interfaces: The Behavior of Terminal Based Programs and GUI -Based,

Programs, Coding Simple GUI-Based Programs, Other Useful GUI Resources.

Programming: Introduction to Programming Concepts with Scratch.

Text Books

1) Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.

2) Python Programming: A Modern Approach, Vamsi Kurama, Pearson.

Reference Books:

1) Introduction to Python Programming, Gowrishankar.S, Veena A, CRC Press.

2) Introduction to Programming Using Python, Y. Daniel Liang, Pearson.

e-Resources:

https://www.tutorialspoint.com/python3/python_tutorial.pdf

https://www.tutorialspoint.com/python3/python_tutorial.pdf

VSM COLLEGE OF ENGINEERING
RAMACHANDRAPURAM

DEPARTMENT OF BASIC SCIENCES AND HUMANITIES

Course Title Year/Sem Branch Periods per Week

PYTHON

PROGRAMMING
I/II CSE

BRANCH
5

Unit

No

Outcomes

Name of the Topic

No. of

Periods

required

Total

Period

s

Referen

ce Book

Methodology

to be adopted

 Unit-1

I

CO 1, CO3,

CO4

Python
Introduction,

Data Types, and

Expression,
Decision

Structures

and Boolean

Logic

 Introduction to Python, Program

Development Cycle
1

14

T1, T2

R20

Black Board

 Input, Processing, and Output,
Displaying Output with the Print

Function

2 Black Board

 Comments, Variables, Reading
Input from the Keyboard

1 Black Board

 Performing Calculations,
Operators. Type conversions

1 E- CLASS

ROOM

 Expressions, More about Data
Output

1 Black Board

 Strings Assignment, and Comment 1 E- CLASS

ROOM
 Numeric Data Types and Character

Sets, Using functions and Modules
2 Black Board

 if, if-else, if-elif-else Statements,
Nested Decision Structure

 1

 Comparing Strings, Logical
Operators, Boolean Variables

1 Black Board

 Repetition Structures: Introduction,
while loop, for loop

1 Black Board

 Calculating a Running Total, Input
Validation Loops

1 E- CLASS

ROOM
 Nested Loops

1 Black Board

Course Outcomes:

 To learn about Python programming language syntax, semantics, and the runtime

environment

 To be familiarized with universal computer programming concepts like data types,

containers

 To be familiarized with general computer programming concepts like conditional

execution, loops & functions

 To be familiarized with general coding techniques and object-oriented programming

 Unit-2

II

CO 1,
 CO3, CO4

Control

Statement,

Strings and

Text Files

 Definite iteration for Loop Formatting
Text for output

2

12

T1, T2

R20

Black
Board

 Selection if and if else Statement

Conditional Iteration The While Loop
2

Black
Board

 Accessing Character and Substring in

Strings

2
E-
CLASS
ROOM

 Data Encryption
2

Black

Board

 Strings and Number Systems 2
Black
Board

 String Methods Text Files 2
Black
Board

 Unit-3

III

CO1, CO2,

CO3
List and

Dictionaries,
Design with

Function,
Modules

 Lists, Defining Simple Functions 2

10

T1, T2

R20

Black

Board

 Dictionaries 1
Black

Board

 Functions as Abstraction Mechanisms 1
E-

CLASS
ROOM

Design with Recursive Functions 1
Black
Board

 Case Study Gathering Information from a
File System

 1

 Managing a Program’s Namespace,

Higher Order Function

2
Black
Board

Modules, Standard Modules

1

E- CLASS

ROOM

Packages

1

Black
Board

CO 1, CO3,

CO4
File

Operations,
Object

Oriented
Programmin

g, Design
with

Classes

Unit-4

Reading config files in python, Writing

log files in python
2 Black Board

Understanding read functions, read(),
readline() and readlines()

2 Black Board

Understanding write functions 1 E-CLASS

ROOM

write() and writelines(), Manipulating file
pointer using seek

1 Black Board

Programming using file

operations

 1 Black Board
IV

Concept of class, object and instances,
Constructor

2 Black Board
 16

class attributes and destructors, Real time

use of class in live projects
2

Black
Board

Inheritance , overlapping and overloading

operators
1

Black
Board

Adding and retrieving dynamic attributes

of classes, Programming using Oops

support

2

E-CLASS

ROOM

Objects and Classes, Data modeling

Examples
1

Black
Board

Case Study An ATM, Structuring Classes

with Inheritance and Polymorphism

1

Black
Board

V

CO 1, CO2,

CO3, CO4
Errors and

Exceptions,

Graphical

User

Interfaces,

Programmin

g

Unit-5

12

T1, T2

R20

Black Board

Syntax Errors, Exceptions,
Handling Exceptions

2 Black Board

Raising Exceptions, User-
defined Exceptions

2 Black Board

Defining Clean-up Actions,
Redefined Clean-up Actions

2 E-CLASS

ROOM
The Behavior of Terminal

Based Programs and GUI -

Based, Programs

 2 Black Board

Coding Simple GUI-Based

Programs, Other Useful GUI

Resources

2

Black Board

Introduction to Programming

Concepts with Scratch
2

Black Board

Text Books
1) Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.

2) Python Programming: A Modern Approach, Vamsi Kurama, Pearson.

Reference Books:

1) Introduction to Python Programming, Gowrishankar.S, Veena A, CRC Press.

2) Introduction to Programming Using Python, Y. Daniel Liang, Pearson.

e-Resources:
https://www.tutorialspoint.com/python3/python_tutorial.pdf

Faculty Member Head of the Department Principal

PYTHON

What is Python?

Python is a popular programming language. It was created by Guido van Rossum, and released in

1991.

It is used for:

 web development (server-side),

 software development,

 mathematics,

 system scripting.



What can Python do?

 Python can be used on a server to create web applications.

 Python can be used alongside software to create workflows.

 Python can connect to database systems. It can also read and modify files.

 Python can be used to handle big data and perform complex mathematics.

 Python can be used for rapid prototyping, or for production-ready software development.

]

Why Python?

 Python works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc).

 Python has a simple syntax similar to the English language.

 Python has syntax that allows developers to write programs with fewer lines than some other

programming languages.

 Python runs on an interpreter system, meaning that code can be executed as soon as it is

written. This means that prototyping can be very quick.

 Python can be treated in a procedural way, an object-oriented way or a functional way.

Good to know

 In this tutorial Python will be written in a text editor. It is possible to write Python in an

Integrated Development Environment, such as Thonny, Pycharm, Netbeans or Eclipse which

are particularly useful when managing larger collections of Python files.

Python Syntax compared to other programming languages

 Python was designed for readability, and has some similarities to the English language with

influence from mathematics.

 Python uses new lines to complete a command, as opposed to other programming languages

which often use semicolons or parentheses.

 Python relies on indentation, using whitespace, to define scope; such as the scope of loops,

functions and classes. Other programming languages often use curly-brackets for this

purpose.

Example

print("Hello, World!")

Python Install

Many PCs and Macs will have python already installed.

To check if you have python installed on a Windows PC, search in the start bar for Python or run

the following on the Command Line (cmd.exe):

C:\Users\Your Name>python --version

To check if you have python installed on a Linux or Mac, then on linux open the command line or

on Mac open the Terminal and type:

python --version

If you find that you do not have Python installed on your computer, then you can download it for

free from the following website: https://www.python.org/

Python Quickstart

Python is an interpreted programming language, this means that as a developer you write Python

(.py) files in a text editor and then put those files into the python interpreter to be executed.

The way to run a python file is like this on the command line:

C:\Users\Your Name>python helloworld.py

Where "helloworld.py" is the name of your python file.

Let's write our first Python file, called helloworld.py, which can be done in any text editor.

helloworld.py

print("Hello, World!")

Try it Yourself »

Simple as that. Save your file. Open your command line, navigate to the directory where you saved

your file, and run:

C:\Users\Your Name>python helloworld.py

The output should read:

Hello, World!

The Python Command Line

To test a short amount of code in python sometimes it is quickest and easiest not to write the code

in a file. This is made possible because Python can be run as a command line itself.

https://www.python.org/
https://www.w3schools.com/python/trypython.asp?filename=demo_helloworld

Type the following on the Windows, Mac or Linux command line:

C:\Users\Your Name>python

Or, if the "python" command did not work, you can try "py":

C:\Users\Your Name>py

From there you can write any python, including our hello world example from earlier in the

tutorial:

C:\Users\Your Name>python

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> print("Hello, World!")

Which will write "Hello, World!" in the command line:

C:\Users\Your Name>python

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> print("Hello, World!")

Hello, World!

Whenever you are done in the python command line, you can simply type the following to quit the

python command line interface:

exit()

Python Syntax

Execute Python Syntax

As we learned in the previous page, Python syntax can be executed by writing directly in the

Command Line:

>>> print("Hello, World!")

Hello, World!

Execute Python SyntaxPython IndentationPython VariablesPython CommentsExercises

Or by creating a python file on the server, using the .py file extension, and running it in the

Command Line:

C:\Users\Your Name>python myfile.py

https://www.w3schools.com/python/python_syntax.asp#execute_python_syntax
https://www.w3schools.com/python/python_syntax.asp#execute_python_syntax
https://www.w3schools.com/python/python_syntax.asp#python_variables
https://www.w3schools.com/python/python_syntax.asp#python_variables
https://www.w3schools.com/python/python_syntax.asp#exercises

Python Indentation

Indentation refers to the spaces at the beginning of a code line.

Where in other programming languages the indentation in code is for readability only, the

indentation in Python is very important.

Python uses indentation to indicate a block of code.

Example

if 5 > 2:

 print("Five is greater than two!")

Python will give you an error if you skip the indentation:

Example

Syntax Error:

if 5 > 2:

print("Five is greater than two!")

The number of spaces is up to you as a programmer, the most common use is four, but it has to be

at least one.

Example

if 5 > 2:

 print("Five is greater than two!")

if 5 > 2:

 print("Five is greater than two!")

You have to use the same number of spaces in the same block of code, otherwise Python will give

you an error:

Example

Syntax Error:

if 5 > 2:

 print("Five is greater than two!")

 print("Five is greater than two!")

Python Variables

In Python, variables are created when you assign a value to it:

Example

Variables in Python:

x = 5

y = "Hello, World!"

Try it Yourself »

Python has no command for declaring a variable.

You will learn more about variables in the Python Variables chapter.

Comments

Python has commenting capability for the purpose of in-code documentation.

Comments start with a #, and Python will render the rest of the line as a comment:

Example

Comments in Python:

#This is a comment.

print("Hello, World!")

Try it Yourself »

Python Comments

Comments can be used to explain Python code.

Comments can be used to make the code more readable.

Comments can be used to prevent execution when testing code.

Creating a Comment

Comments starts with a #, and Python will ignore them:

Example

#This is a comment

print("Hello, World!")

Comments can be placed at the end of a line, and Python will ignore the rest of the line:

Example

print("Hello, World!") #This is a comment

A comment does not have to be text that explains the code, it can also be used to prevent Python

from executing code:

Example

https://www.w3schools.com/python/trypython.asp?filename=demo_syntax_variables
https://www.w3schools.com/python/python_variables.asp
https://www.w3schools.com/python/trypython.asp?filename=demo_comment

#print("Hello, World!")

print("Cheers, Mate!")

Multi Line Comments

Python does not really have a syntax for multi line comments.

To add a multiline comment you could insert a # for each line:

Example

#This is a comment

#written in

#more than just one line

print("Hello, World!")

Try it Yourself »

Or, not quite as intended, you can use a multiline string.

Since Python will ignore string literals that are not assigned to a variable, you can add a multiline

string (triple quotes) in your code, and place your comment inside it:

Example

"""

This is a comment

written in

more than just one line

"""

print("Hello, World!")

Try it Yourself »

As long as the string is not assigned to a variable, Python will read the code, but then ignore it, and

you have made a multiline comment.

Python Variables

Variables

Variables are containers for storing data values.

Creating Variables

Python has no command for declaring a variable.

A variable is created the moment you first assign a value to it.

Example

https://www.w3schools.com/python/trypython.asp?filename=demo_comment4
https://www.w3schools.com/python/trypython.asp?filename=demo_comment5

x = 5

y = "John"

print(x)

print(y)

Variables do not need to be declared with any particular type, and can even change type after they

have been set.

Example

x = 4 # x is of type int

x = "Sally" # x is now of type str

print(x)

Casting

If you want to specify the data type of a variable, this can be done with casting.

Example

x = str(3) # x will be '3'

y = int(3) # y will be 3

z = float(3) # z will be 3.0

Get the Type

You can get the data type of a variable with the type() function.

Example

x = 5

y = "John"

print(type(x))

print(type(y))

Single or Double Quotes?

String variables can be declared either by using single or double quotes:

Example

x = "John"

is the same as

x = 'John'

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_variables7

Case-Sensitive

Variable names are case-sensitive.

Example

This will create two variables:

a = 4

A = "Sally"

#A will not overwrite a

Python - Variable Names

Variable Names

A variable can have a short name (like x and y) or a more descriptive name (age, carname,

total_volume). Rules for Python variables:

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number

 A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _

)

 Variable names are case-sensitive (age, Age and AGE are three different variables)

Example

Legal variable names:

myvar = "John"

my_var = "John"

_my_var = "John"

myVar = "John"

MYVAR = "John"

myvar2 = "John"

Example

Illegal variable names:

2myvar = "John"

my-var = "John"

my var = "John"

Multi Words Variable Names

Variable names with more than one word can be difficult to read.

There are several techniques you can use to make them more readable:

Camel Case

Each word, except the first, starts with a capital letter:

myVariableName = "John"

One Value to Multiple Variables

And you can assign the same value to multiple variables in one line:

Example

x = y = z = "Orange"

print(x)

print(y)

print(z)

Unpack a Collection

If you have a collection of values in a list, tuple etc. Python allows you to extract the values into

variables. This is called unpacking.

Example

Unpack a list:

fruits = ["apple", "banana", "cherry"]

x, y, z = fruits

print(x)

print(y)

print(z)

Python - Output Variables

Output Variables

The Python print() function is often used to output variables.

Example

x = "Python is awesome"

print(x)

In the print() function, you output multiple variables, separated by a comma:

Example

x = "Python"

y = "is"

z = "awesome"

print(x, y, z)

You can also use the + operator to output multiple variables:

Example

x = "Python "

y = "is "

z = "awesome"

print(x + y + z)

For numbers, the + character works as a mathematical operator:

Example

x = 5

y = 10

print(x + y)

In the print() function, when you try to combine a string and a number with the + operator, Python

will give you an error:

Example

x = 5

y = "John"

print(x + y)

The best way to output multiple variables in the print() function is to separate them with commas,

which even support different data types:

Example

x = 5

y = "John"

print(x, y)

Global Variables

Variables that are created outside of a function (as in all of the examples above) are known as

global variables.

Global variables can be used by everyone, both inside of functions and outside.

Example

Create a variable outside of a function, and use it inside the function

x = "awesome"

def myfunc():

 print("Python is " + x)

myfunc()

Try it Yourself »

If you create a variable with the same name inside a function, this variable will be local, and can

only be used inside the function. The global variable with the same name will remain as it was,

global and with the original value.

Example

Create a variable inside a function, with the same name as the global variable

x = "awesome"

def myfunc():

https://www.w3schools.com/python/trypython.asp?filename=demo_variables_global

 x = "fantastic"

 print("Python is " + x)

myfunc()

print("Python is " + x)

The global Keyword

Normally, when you create a variable inside a function, that variable is local, and can only be used

inside that function.

To create a global variable inside a function, you can use the global keyword.

Example

If you use the global keyword, the variable belongs to the global scope:

def myfunc():

 global x

 x = "fantastic"

myfunc()

print("Python is " + x)

Try it Yourself »

Also, use the global keyword if you want to change a global variable inside a function.

Example

To change the value of a global variable inside a function, refer to the variable by using

the global keyword:

x = "awesome"

def myfunc():

 global x

 x = "fantastic"

myfunc()

print("Python is " + x)

Python Data Types

Built-in Data Types

In programming, data type is an important concept.

Variables can store data of different types, and different types can do different things.

Python has the following data types built-in by default, in these categories:

https://www.w3schools.com/python/trypython.asp?filename=demo_variables_global3

Text Type: Str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: Dict

Set Types: set, frozenset

Boolean Type: Bool

Binary Types: bytes, bytearray, memoryview

None Type: NoneType

Getting the Data Type

You can get the data type of any object by using the type() function:

Example

Print the data type of the variable x:

x = 5

print(type(x))

Setting the Data Type

In Python, the data type is set when you assign a value to a variable:

Example Data Type

x = "Hello World" str

x = 20 int

x = 20.5 float

x = 1j complex

x = ["apple", "banana", "cherry"] list

x = ("apple", "banana", "cherry") tuple

x = range(6) range

x = {"name" : "John", "age" : 36} dict

x = {"apple", "banana", "cherry"} set

x = True bool

Python Numbers

There are three numeric types in Python:

 int

 float

 complex

Variables of numeric types are created when you assign a value to them:

Example

x = 1 # int

y = 2.8 # float

z = 1j # complex

To verify the type of any object in Python, use the type() function:

Example

print(type(x))

print(type(y))

print(type(z))

Int

Int, or integer, is a whole number, positive or negative, without decimals, of unlimited length.

Example

Integers:

x = 1

y = 35656222554887711

z = -3255522

print(type(x))

print(type(y))

print(type(z))

Float

Float, or "floating point number" is a number, positive or negative, containing one or more

decimals.

Example

Floats:

x = 1.10

y = 1.0

z = -35.59

print(type(x))

print(type(y))

print(type(z))

Float can also be scientific numbers with an "e" to indicate the power of 10.

Example

Floats:

x = 35e3

y = 12E4

z = -87.7e100

print(type(x))

print(type(y))

print(type(z))

Complex

Complex numbers are written with a "j" as the imaginary part:

Example

Complex:

x = 3+5j

y = 5j

z = -5j

print(type(x))

print(type(y))

print(type(z))

Type Conversion

You can convert from one type to another with the int(), float(), and complex() methods:

Example

Convert from one type to another:

x = 1 # int

y = 2.8 # float

z = 1j # complex

#convert from int to float:

a = float(x)

#convert from float to int:

b = int(y)

#convert from int to complex:

c = complex(x)

print(a)

print(b)

print(c)

print(type(a))

print(type(b))

print(type(c))

Random Number

Python does not have a random() function to make a random number, but Python has a built-in

module called random that can be used to make random numbers:

Example

Import the random module, and display a random number between 1 and 9:

import random

print(random.randrange(1, 10))

Try it Yourself »

Assign String to a Variable

Assigning a string to a variable is done with the variable name followed by an equal sign and the

string:

Example

a = "Hello"

print(a)

Multiline Strings

You can assign a multiline string to a variable by using three quotes:

https://www.w3schools.com/python/trypython.asp?filename=demo_float

Example

You can use three double quotes:

a = """Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua."""

print(a)

Or three single quotes:

Example

a = '''Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.'''

print(a)

Strings are Arrays

Like many other popular programming languages, strings in Python are arrays of bytes

representing unicode characters.

However, Python does not have a character data type, a single character is simply a string with a

length of 1.

Square brackets can be used to access elements of the string.

Example

Get the character at position 1 (remember that the first character has the position 0):

a = "Hello, World!"

print(a[1])

Try it Yourself »

Looping Through a String

Since strings are arrays, we can loop through the characters in a string, with a for loop.

Example

Loop through the letters in the word "banana":

for x in "banana":

 print(x)

Try it Yourself »

String Length

of a string, use the len() function.

Example

The len() function returns the length of a string:

a = "Hello, World!"

print(len(a))

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_string1
https://www.w3schools.com/python/trypython.asp?filename=demo_for_string
https://www.w3schools.com/python/trypython.asp?filename=demo_string_len

Python - Slicing Strings

You can return a range of characters by using the slice syntax.

Specify the start index and the end index, separated by a colon, to return a part of the string.

Example

Get the characters from position 2 to position 5 (not included):

b = "Hello, World!"

print(b[2:5])

Note: The first character has index 0.

Slice From the Start

By leaving out the start index, the range will start at the first character:

Example

Get the characters from the start to position 5 (not included):

b = "Hello, World!"

print(b[:5])

Slice To the End

By leaving out the end index, the range will go to the end:

Example

Get the characters from position 2, and all the way to the end:

b = "Hello, World!"

print(b[2:])

Negative Indexing

Use negative indexes to start the slice from the end of the string:

Example

Get the characters:

From: "o" in "World!" (position -5)

To, but not included: "d" in "World!" (position -2):

b = "Hello, World!"

print(b[-5:-2])

Python - Modify Strings

Python has a set of built-in methods that you can use on strings.

Upper Case

Example

The upper() method returns the string in upper case:

a = "Hello, World!"

print(a.upper())

Lower Case

Example

The lower() method returns the string in lower case:

a = "Hello, World!"

print(a.lower())

Replace String

Example

The replace() method replaces a string with another string:

a = "Hello, World!"

print(a.replace("H", "J"))

Try it Yourself »

Split String

The split() method returns a list where the text between the specified separator becomes the list

items.

Example

The split() method splits the string into substrings if it finds instances of the separator:

a = "Hello, World!"

print(a.split(",")) # returns ['Hello', ' World!']

Try it Yourself »

String Methods

String Concatenation

To concatenate, or combine, two strings you can use the + operator.

Example

Merge variable a with variable b into variable c:

a = "Hello"

b = "World"

c = a + b

print(c)

Try it Yourself »

Example

To add a space between them, add a " ":

a = "Hello"

b = "World"

https://www.w3schools.com/python/trypython.asp?filename=demo_string_replace
https://www.w3schools.com/python/trypython.asp?filename=demo_string_split
https://www.w3schools.com/python/trypython.asp?filename=demo_string_concat

c = a + " " + b

print(c)

Python - Format - Strings

String Format

As we learned in the Python Variables chapter, we cannot combine strings and numbers like this:

Example

age = 36

txt = "My name is John, I am " + age

print(txt)

But we can combine strings and numbers by using the format() method!

The format() method takes the passed arguments, formats them, and places them in the string

where the placeholders {} are:

Example

Use the format() method to insert numbers into strings:

age = 36

txt = "My name is John, and I am {}"

print(txt.format(age))

The format() method takes unlimited number of arguments, and are placed into the respective

placeholders:

Example

quantity = 3

itemno = 567

price = 49.95

myorder = "I want {} pieces of item {} for {} dollars."

print(myorder.format(quantity, itemno, price))

You can use index numbers {0} to be sure the arguments are placed in the correct placeholders:

Example

quantity = 3

itemno = 567

price = 49.95

myorder = "I want to pay {2} dollars for {0} pieces of item {1}."

print(myorder.format(quantity, itemno, price))

Python - Escape Characters

Escape Character

To insert characters that are illegal in a string, use an escape character.

An escape character is a backslash \ followed by the character you want to insert.

An example of an illegal character is a double quote inside a string that is surrounded by double

quotes:

Example

You will get an error if you use double quotes inside a string that is surrounded by double quotes:

txt = "We are the so-called "Vikings" from the north."

To fix this problem, use the escape character \":

Example

The escape character allows you to use double quotes when you normally would not be allowed:

txt = "We are the so-called \"Vikings\" from the north."

Escape Characters

Other escape characters used in Python:

Code Result

\' Single Quote

\\ Backslash

\n New Line

\r Carriage Return

\t Tab

\b Backspace

\f Form Feed

\ooo Octal value

\xhh Hex value

Python - String Methods

String Methods

Python has a set of built-in methods that you can use on strings.

Note: All string methods returns new values. They do not change the original string.

Method Description

capitalize() Converts the first character to upper case

casefold() Converts string into lower case

center() Returns a centered string

count() Returns the number of times a specified value occurs in a string

encode() Returns an encoded version of the string

endswith() Returns true if the string ends with the specified value

expandtabs() Sets the tab size of the string

find() Searches the string for a specified value and returns the position of where it was found

format() Formats specified values in a string

format_map() Formats specified values in a string

index()

etc…

Searches the string for a specified value and returns the position of where it was found

Boolean Values

In programming you often need to know if an expression is True or False.

You can evaluate any expression in Python, and get one of two answers, True or False.

When you compare two values, the expression is evaluated and Python returns the Boolean answer:

Example

print(10 > 9)

print(10 == 9)

print(10 < 9)

Try it Yourself »

When you run a condition in an if statement, Python returns True or False:

Example

Print a message based on whether the condition is True or False:

a = 200

b = 33

if b > a:

 print("b is greater than a")

else:

 print("b is not greater than a")

Try it Yourself »

https://www.w3schools.com/python/ref_string_capitalize.asp
https://www.w3schools.com/python/ref_string_casefold.asp
https://www.w3schools.com/python/ref_string_center.asp
https://www.w3schools.com/python/ref_string_count.asp
https://www.w3schools.com/python/ref_string_encode.asp
https://www.w3schools.com/python/ref_string_endswith.asp
https://www.w3schools.com/python/ref_string_expandtabs.asp
https://www.w3schools.com/python/ref_string_find.asp
https://www.w3schools.com/python/ref_string_format.asp
https://www.w3schools.com/python/ref_string_index.asp
https://www.w3schools.com/python/trypython.asp?filename=demo_booleans1
https://www.w3schools.com/python/trypython.asp?filename=demo_booleans2

Evaluate Values and Variables

The bool() function allows you to evaluate any value, and give you True or False in return,

Example

Evaluate a string and a number:

print(bool("Hello"))

print(bool(15))

Try it Yourself »

Example

Evaluate two variables:

x = "Hello"

y = 15

print(bool(x))

print(bool(y))

Python Operators

Python Operators

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Example

print(10 + 5)

Python divides the operators in the following groups:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Logical operators

 Identity operators

 Membership operators

 Bitwise operators

Python Arithmetic Operators

Arithmetic operators are used with numeric values to perform common mathematical operations:

Operator Name Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

https://www.w3schools.com/python/trypython.asp?filename=demo_booleans3

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

// Floor division x // y

Python Assignment Operators

Assignment operators are used to assign values to variables:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

**= x **= 3 x = x ** 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Python Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Python Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example

and Returns True if both statements are true x < 5 and x < 10

or Returns True if one of the statements is true x < 5 or x < 4

not Reverse the result, returns False if the result is

true

not(x < 5 and x < 10)

Python Identity Operators

Identity operators are used to compare the objects, not if they are equal, but if they are actually the

same object, with the same memory location:

Operator Description Example

is Returns True if both variables are the same

object

x is y

is not Returns True if both variables are not the same

object

x is not y

Python Membership Operators

Membership operators are used to test if a sequence is presented in an object:

Operator Description Example

in Returns True if a sequence with the specified value is

present in the object

x in y

not in Returns True if a sequence with the specified value is not

present in the object

x not in y

Python Bitwise Operators

Bitwise operators are used to compare (binary) numbers:

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

 ^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left

shift

Shift left by pushing zeros in from the right and let the leftmost bits fall off

>> Signed right

shift

Shift right by pushing copies of the leftmost bit in from the left, and let the

rightmost bits fall off

Python Lists

mylist = ["apple", "banana", "cherry"]

List

Lists are used to store multiple items in a single variable.

Lists are one of 4 built-in data types in Python used to store collections of data, the other 3

are Tuple, Set, and Dictionary, all with different qualities and usage.

Lists are created using square brackets:

Example

Create a List:

thislist = ["apple", "banana", "cherry"]

print(thislist)

List Items

List items are ordered, changeable, and allow duplicate values.

List items are indexed, the first item has index [0], the second item has index [1] etc.

https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

Ordered

When we say that lists are ordered, it means that the items have a defined order, and that order will

not change.

If you add new items to a list, the new items will be placed at the end of the list.

Changeable

The list is changeable, meaning that we can change, add, and remove items in a list after it has been

created.

Allow Duplicates

Since lists are indexed, lists can have items with the same value:

Example

Lists allow duplicate values:

thislist = ["apple", "banana", "cherry", "apple", "cherry"]

print(thislist)

List Length

To determine how many items a list has, use the len() function:

Example

Print the number of items in the list:

thislist = ["apple", "banana", "cherry"]

print(len(thislist))

List Items - Data Types

List items can be of any data type:

Example

String, int and boolean data types:

list1 = ["apple", "banana", "cherry"]

list2 = [1, 5, 7, 9, 3]

list3 = [True, False, False]

A list can contain different data types:

Example

A list with strings, integers and boolean values:

list1 = ["abc", 34, True, 40, "male"]

Python - Access List Items

Access Items

List items are indexed and you can access them by referring to the index number:

Example

Print the second item of the list:

thislist = ["apple", "banana", "cherry"]

print(thislist[1])

Negative Indexing

Negative indexing means start from the end

-1 refers to the last item, -2 refers to the second last item etc.

Example

Print the last item of the list:

thislist = ["apple", "banana", "cherry"]

print(thislist[-1])

Range of Indexes

You can specify a range of indexes by specifying where to start and where to end the range.

When specifying a range, the return value will be a new list with the specified items.

Example

Return the third, fourth, and fifth item:

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[2:5])

Example

This example returns the items from the beginning to, but NOT including, "kiwi":

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[:4])

By leaving out the end value, the range will go on to the end of the list:

Example

This example returns the items from "cherry" to the end:

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]

print(thislist[2:])

Insert Items

To insert a new list item, without replacing any of the existing values, we can use

the insert() method.

The insert() method inserts an item at the specified index:

Example

Insert "watermelon" as the third item:

thislist = ["apple", "banana", "cherry"]

thislist.insert(2, "watermelon")

print(thislist)

Python - Add List Items

Append Items

To add an item to the end of the list, use the append() method:

Example

Using the append() method to append an item:

thislist = ["apple", "banana", "cherry"]

thislist.append("orange")

print(thislist)

Insert Items

To insert a list item at a specified index, use the insert() method.

The insert() method inserts an item at the specified index:

Example

Insert an item as the second position:

thislist = ["apple", "banana", "cherry"]

thislist.insert(1, "orange")

print(thislist)

Extend List

To append elements from another list to the current list, use the extend() method.

Example

Add the elements of tropical to thislist:

thislist = ["apple", "banana", "cherry"]

tropical = ["mango", "pineapple", "papaya"]

thislist.extend(tropical)

print(thislist)

Remove Specified Item

The remove() method removes the specified item.

Example

Remove "banana":

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana")

print(thislist)

Remove Specified Index

The pop() method removes the specified index.

Example

Remove the second item:

thislist = ["apple", "banana", "cherry"]

thislist.pop(1)

print(thislist)

Try it Yourself »

If you do not specify the index, the pop() method removes the last item.

Example

Remove the last item:

thislist = ["apple", "banana", "cherry"]

thislist.pop()

print(thislist)

Try it Yourself »

The del keyword also removes the specified index:

Example

Remove the first item:

thislist = ["apple", "banana", "cherry"]

del thislist[0]

print(thislist)

The del keyword can also delete the list completely.

Example

Delete the entire list:

thislist = ["apple", "banana", "cherry"]

del thislist

Sort List Alphanumerically

List objects have a sort() method that will sort the list alphanumerically, ascending, by default:

Example

Sort the list alphabetically:

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]

thislist.sort()

print(thislist)

['banana', 'kiwi', 'mango', 'orange', 'pineapple']

Try it Yourself »

Example

Sort the list numerically:

thislist = [100, 50, 65, 82, 23]

thislist.sort()

print(thislist)

[23, 50, 65, 82, 100]

https://www.w3schools.com/python/trypython.asp?filename=demo_list_pop2
https://www.w3schools.com/python/trypython.asp?filename=demo_list_pop
https://www.w3schools.com/python/trypython.asp?filename=demo_list_sort

Python - List Methods

List Methods

Python has a set of built-in methods that you can use on lists.

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

Tuple

Tuples are used to store multiple items in a single variable.

Tuple is one of 4 built-in data types in Python used to store collections of data, the other 3

are List, Set, and Dictionary, all with different qualities and usage.

A tuple is a collection which is ordered and unchangeable.

Tuples are written with round brackets.

Example

Create a Tuple:

thistuple = ("apple", "banana", "cherry")

print(thistuple)

Try it Yourself »

Tuple Items

Tuple items are ordered, unchangeable, and allow duplicate values.

Tuple items are indexed, the first item has index [0], the second item has index [1] etc.

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp
https://www.w3schools.com/python/trypython.asp?filename=demo_tuple

Ordered

When we say that tuples are ordered, it means that the items have a defined order, and that order

will not change.

Unchangeable

Tuples are unchangeable, meaning that we cannot change, add or remove items after the tuple has

been created.

Allow Duplicates

Since tuples are indexed, they can have items with the same value:

Example

Tuples allow duplicate values:

thistuple = ("apple", "banana", "cherry", "apple", "cherry")

print(thistuple)

Tuple Length

To determine how many items a tuple has, use the len() function:

Example

Print the number of items in the tuple:

thistuple = ("apple", "banana", "cherry")

print(len(thistuple))

Try it Yourself »

Create Tuple With One Item

To create a tuple with only one item, you have to add a comma after the item, otherwise Python

will not recognize it as a tuple.

Example

One item tuple, remember the comma:

thistuple = ("apple",)

print(type(thistuple))

#NOT a tuple

thistuple = ("apple")

print(type(thistuple))

Try it Yourself »

Tuple Items - Data Types

Tuple items can be of any data type:

https://www.w3schools.com/python/trypython.asp?filename=demo_tuple_len
https://www.w3schools.com/python/trypython.asp?filename=demo_tuple_one_item

Example

String, int and boolean data types:

tuple1 = ("apple", "banana", "cherry")

tuple2 = (1, 5, 7, 9, 3)

tuple3 = (True, False, False)

Try it Yourself »

A tuple can contain different data types:

Example

A tuple with strings, integers and boolean values:

tuple1 = ("abc", 34, True, 40, "male")

Python - Access Tuple Items

Access Tuple Items

You can access tuple items by referring to the index number, inside square brackets:

Example

Print the second item in the tuple:

thistuple = ("apple", "banana", "cherry")

print(thistuple[1])

Note: The first item has index 0.

Negative Indexing

Negative indexing means start from the end.

-1 refers to the last item, -2 refers to the second last item etc.

Example

Print the last item of the tuple:

thistuple = ("apple", "banana", "cherry")

print(thistuple[-1])

Range of Indexes

You can specify a range of indexes by specifying where to start and where to end the range.

When specifying a range, the return value will be a new tuple with the specified items.

Example

Return the third, fourth, and fifth item:

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")

print(thistuple[2:5])

Range of Negative Indexes

Specify negative indexes if you want to start the search from the end of the tuple:

Example

This example returns the items from index -4 (included) to index -1 (excluded)

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")

print(thistuple[-4:-1])

https://www.w3schools.com/python/trypython.asp?filename=demo_tuple_datatypes

('orange', 'kiwi', 'melon')

Check if Item Exists

To determine if a specified item is present in a tuple use the in keyword:

Example

Check if "apple" is present in the tuple:

thistuple = ("apple", "banana", "cherry")

if "apple" in thistuple:

 print("Yes, 'apple' is in the fruits tuple")

Python - Update Tuples

Tuples are unchangeable, meaning that you cannot change, add, or remove items once the tuple is

created.

But there are some workarounds.

Change Tuple Values

Once a tuple is created, you cannot change its values. Tuples are unchangeable, or immutable as

it also is called.

But there is a workaround. You can convert the tuple into a list, change the list, and convert the list

back into a tuple.

Example

Convert the tuple into a list to be able to change it:

x = ("apple", "banana", "cherry")

y = list(x)

y[1] = "kiwi"

x = tuple(y)

print(x)

("apple", "kiwi", "cherry")

Python Sets

myset = {"apple", "banana", "cherry"}

Set

Sets are used to store multiple items in a single variable.

Set is one of 4 built-in data types in Python used to store collections of data, the other 3

are List, Tuple, and Dictionary, all with different qualities and usage.

A set is a collection which is unordered, unchangeable*, and unindexed.

* Note: Set items are unchangeable, but you can remove items and add new items.

Sets are written with curly brackets.

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_dictionaries.asp

Example

Create a Set:

thisset = {"apple", "banana", "cherry"}

print(thisset)

Note: Sets are unordered, so you cannot be sure in which order the items will appear.

Set Items

Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered

Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot be referred to by

index or key.

Unchangeable

Set items are unchangeable, meaning that we cannot change the items after the set has been

created.

Once a set is created, you cannot change its items, but you can remove items and add new items.

Duplicates Not Allowed

Sets cannot have two items with the same value.

Example

Duplicate values will be ignored:

thisset = {"apple", "banana", "cherry", "apple"}

print(thisset)

Get the Length of a Set

To determine how many items a set has, use the len() function.

Example

Get the number of items in a set:

thisset = {"apple", "banana", "cherry"}

print(len(thisset))

Set Items - Data Types

Set items can be of any data type:

Example

String, int and boolean data types:

set1 = {"apple", "banana", "cherry"}

set2 = {1, 5, 7, 9, 3}

set3 = {True, False, False}

A set can contain different data types:

Example

A set with strings, integers and boolean values:

set1 = {"abc", 34, True, 40, "male"}

Access Items

You cannot access items in a set by referring to an index or a key.

But you can loop through the set items using a for loop, or ask if a specified value is present in a

set, by using the in keyword.

Example

Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

 print(x)

Try it Yourself »

Example

Check if "banana" is present in the set:

thisset = {"apple", "banana", "cherry"}

print("banana" in thisset)

Try it Yourself »

Python - Add Set Items

Add Items

Once a set is created, you cannot change its items, but you can add new items.

To add one item to a set use the add() method.

Example

Add an item to a set, using the add() method:

thisset = {"apple", "banana", "cherry"}

thisset.add("orange")

print(thisset)

Add Sets

https://www.w3schools.com/python/trypython.asp?filename=demo_set_loop
https://www.w3schools.com/python/trypython.asp?filename=demo_set_in

To add items from another set into the current set, use the update() method.

Example

Add elements from tropical into thisset:

thisset = {"apple", "banana", "cherry"}

tropical = {"pineapple", "mango", "papaya"}

thisset.update(tropical)

print(thisset)

{'apple', 'mango', 'cherry', 'pineapple', 'banana', 'papaya'}

Python - Remove Set Items

Remove Item

To remove an item in a set, use the remove(), or the discard() method.

Example

Remove "banana" by using the remove() method:

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana")

print(thisset)

Note: If the item to remove does not exist, remove() will raise an error.

Example

Remove "banana" by using the discard() method:

thisset = {"apple", "banana", "cherry"}

thisset.discard("banana")

print(thisset)

Note: If the item to remove does not exist, discard() will NOT raise an error.

You can also use the pop() method to remove an item, but this method will remove the last item.

Remember that sets are unordered, so you will not know what item that gets removed.

The return value of the pop() method is the removed item.

Example

Remove the last item by using the pop() method:

thisset = {"apple", "banana", "cherry"}

x = thisset.pop()

print(x)

print(thisset)

apple

{'cherry', 'banana'}

Note: Sets are unordered, so when using the pop() method, you do not know which item that gets

removed.

Example

The clear() method empties the set:

thisset = {"apple", "banana", "cherry"}

thisset.clear()

print(thisset)

set()

Set Methods

Python has a set of built-in methods that you can use on sets.

Method Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

difference() Returns a set containing the difference between two or more sets

 Removes the items in this set that are also included in another, specified set etc..

Python Dictionaries

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

Dictionary

Dictionaries are used to store data values in key:value pairs.

A dictionary is a collection which is ordered*, changeable and do not allow duplicates.

https://www.w3schools.com/python/ref_set_add.asp
https://www.w3schools.com/python/ref_set_clear.asp
https://www.w3schools.com/python/ref_set_copy.asp
https://www.w3schools.com/python/ref_set_difference.asp

As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier, dictionaries

are unordered.

Dictionaries are written with curly brackets, and have keys and values:

Example

Create and print a dictionary:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(thisdict)

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964}

Ordered or Unordered?

As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier, dictionaries

are unordered.

When we say that dictionaries are ordered, it means that the items have a defined order, and that

order will not change.

Unordered means that the items does not have a defined order, you cannot refer to an item by using

an index.

Changeable

Dictionaries are changeable, meaning that we can change, add or remove items after the dictionary

has been created.

Duplicates Not Allowed

Dictionaries cannot have two items with the same key:

Example

Duplicate values will overwrite existing values:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964,

 "year": 2020

}

print(thisdict)

{'brand': 'Ford', 'model': 'Mustang', 'year': 2020}

Python - Access Dictionary Items

Accessing Items

You can access the items of a dictionary by referring to its key name, inside square brackets:

Example

Get the value of the "model" key:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

x = thisdict["model"]

There is also a method called get() that will give you the same result:

Example

Get the value of the "model" key:

x = thisdict.get("model")

Get Keys

The keys() method will return a list of all the keys in the dictionary.

Example

Get a list of the keys:

x = thisdict.keys()

The list of the keys is a view of the dictionary, meaning that any changes done to the dictionary will

be reflected in the keys list.

Example

Add a new item to the original dictionary, and see that the keys list gets updated as well:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

x = car.keys()

print(x) #before the change

car["color"] = "white"

print(x) #after the change

Get Values

The values() method will return a list of all the values in the dictionary.

Example

Get a list of the values:

x = thisdict.values()

The list of the values is a view of the dictionary, meaning that any changes done to the dictionary

will be reflected in the values list.

Example

Make a change in the original dictionary, and see that the values list gets updated as well:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

x = car.values()

print(x) #before the change

car["year"] = 2020

print(x) #after the change

Example

Add a new item to the original dictionary, and see that the values list gets updated as well:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

x = car.values()

print(x) #before the change

car["color"] = "red"

print(x) #after the change

Get Items

The items() method will return each item in a dictionary, as tuples in a list.

Example

Get a list of the key:value pairs

x = thisdict.items()

The returned list is a view of the items of the dictionary, meaning that any changes done to the

dictionary will be reflected in the items list.

Example

Make a change in the original dictionary, and see that the items list gets updated as well:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

x = car.items()

print(x) #before the change

car["year"] = 2020

print(x) #after the change

Example

Add a new item to the original dictionary, and see that the items list gets updated as well:

car = {

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

x = car.items()

print(x) #before the change

car["color"] = "red"

print(x) #after the change

Check if Key Exists

To determine if a specified key is present in a dictionary use the in keyword:

Example

Check if "model" is present in the dictionary:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

if "model" in thisdict:

 print("Yes, 'model' is one of the keys in the thisdict dictionary")

Python - Change Dictionary Items

Change Values

You can change the value of a specific item by referring to its key name:

Example

Change the "year" to 2018:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict["year"] = 2018

Update Dictionary

The update() method will update the dictionary with the items from the given argument.

The argument must be a dictionary, or an iterable object with key:value pairs.

Example

Update the "year" of the car by using the update() method:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.update({"year": 2020})

{'brand': 'Ford', 'model': 'Mustang', 'year': 2020}

Removing Items

There are several methods to remove items from a dictionary:

Example

The pop() method removes the item with the specified key name:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.pop("model")

print(thisdict)

Try it Yourself »

Example

The popitem() method removes the last inserted item (in versions before 3.7, a random item is

removed instead):

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.popitem()

print(thisdict)

Try it Yourself »

Example

The del keyword removes the item with the specified key name:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

del thisdict["model"]

print(thisdict)

Try it Yourself »

Example

The del keyword can also delete the dictionary completely:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

del thisdict

print(thisdict) #this will cause an error because "thisdict" no longer exists.

Try it Yourself »

Example

The clear() method empties the dictionary:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

thisdict.clear()

print(thisdict)

https://www.w3schools.com/python/trypython.asp?filename=demo_dictionary_pop
https://www.w3schools.com/python/trypython.asp?filename=demo_dictionary_popitem
https://www.w3schools.com/python/trypython.asp?filename=demo_dictionary_del2
https://www.w3schools.com/python/trypython.asp?filename=demo_dictionary_del3

Dictionary Methods

Python has a set of built-in methods that you can use on dictionaries.

Method Description

clear() Removes all the elements from the dictionary

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and value

get() Returns the value of the specified key

items() Returns a list containing a tuple for each key value pair

keys() Returns a list containing the dictionary's keys

pop()

etc.

Removes the element with the specified key

Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

 Equals: a == b

 Not Equals: a != b

 Less than: a < b

 Less than or equal to: a <= b

 Greater than: a > b

 Greater than or equal to: a >= b

These conditions can be used in several ways, most commonly in "if statements" and loops.

An "if statement" is written by using the if keyword.

Example

If statement:

a = 33

b = 200

if b > a:

 print("b is greater than a")

In this example we use two variables, a and b, which are used as part of the if statement to test

whether b is greater than a. As a is 33, and b is 200, we know that 200 is greater than 33, and so we

print to screen that "b is greater than a".

Indentation

Python relies on indentation (whitespace at the beginning of a line) to define scope in the code.

Other programming languages often use curly-brackets for this purpose.

Example

If statement, without indentation (will raise an error):

https://www.w3schools.com/python/ref_dictionary_clear.asp
https://www.w3schools.com/python/ref_dictionary_copy.asp
https://www.w3schools.com/python/ref_dictionary_fromkeys.asp
https://www.w3schools.com/python/ref_dictionary_get.asp
https://www.w3schools.com/python/ref_dictionary_items.asp
https://www.w3schools.com/python/ref_dictionary_keys.asp
https://www.w3schools.com/python/ref_dictionary_pop.asp

a = 33

b = 200

if b > a:

print("b is greater than a") # you will get an error

Elif

The elif keyword is pythons way of saying "if the previous conditions were not true, then try this

condition".

Example

a = 33

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

Try it Yourself »

In this example a is equal to b, so the first condition is not true, but the elif condition is true, so we

print to screen that "a and b are equal".

Else

The else keyword catches anything which isn't caught by the preceding conditions.

Example

a = 200

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

else:

 print("a is greater than b")

Try it Yourself »

In this example a is greater than b, so the first condition is not true, also the elif condition is not

true, so we go to the else condition and print to screen that "a is greater than b".

You can also have an else without the elif:

Example

a = 200

b = 33

if b > a:

 print("b is greater than a")

else:

 print("b is not greater than a")

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_if_elif
https://www.w3schools.com/python/trypython.asp?filename=demo_if_else
https://www.w3schools.com/python/trypython.asp?filename=demo_if_else2

Nested If

You can have if statements inside if statements, this is called nested if statements.

Example

x = 41

if x > 10:

 print("Above ten,")

 if x > 20:

 print("and also above 20!")

 else:

 print("but not above 20.")

Try it Yourself »

The pass Statement

if statements cannot be empty, but if you for some reason have an if statement with no content, put

in the pass statement to avoid getting an error.

Example

a = 33

b = 200

if b > a:

 pass

Python While Loops

Python Loops

Python has two primitive loop commands:

 while loops

 for loops

The while Loop

With the while loop we can execute a set of statements as long as a condition is true.

Example

Print i as long as i is less than 6:

i = 1

while i < 6:

 print(i)

 i += 1

Note: remember to increment i, or else the loop will continue forever.

The while loop requires relevant variables to be ready, in this example we need to define an

indexing variable, i, which we set to 1.

The break Statement

With the break statement we can stop the loop even if the while condition is true:

Example

https://www.w3schools.com/python/trypython.asp?filename=demo_if_nested

Exit the loop when i is 3:

i = 1

while i < 6:

 print(i)

 if i == 3:

 break

 i += 1

The continue Statement

With the continue statement we can stop the current iteration, and continue with the next:

Example

Continue to the next iteration if i is 3:

i = 0

while i < 6:

 i += 1

 if i == 3:

 continue

 print(i)

The else Statement

With the else statement we can run a block of code once when the condition no longer is true:

Example

Print a message once the condition is false:

i = 1

while i < 6:

 print(i)

 i += 1

else:

 print("i is no longer less than 6")

Python For Loops

A for loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary, a set, or a

string).

This is less like the for keyword in other programming languages, and works more like an iterator

method as found in other object-orientated programming languages.

With the for loop we can execute a set of statements, once for each item in a list, tuple, set etc.

Example

Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

Try it Yourself »

The for loop does not require an indexing variable to set beforehand.

Looping Through a String

Even strings are iterable objects, they contain a sequence of characters:

Example

Loop through the letters in the word "banana":

for x in "banana":

 print(x)

Try it Yourself »

The break Statement

With the break statement we can stop the loop before it has looped through all the items:

Example

Exit the loop when x is "banana":

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

 if x == "banana":

 break

Try it Yourself »

Example

Exit the loop when x is "banana", but this time the break comes before the print:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 break

 print(x)

Try it Yourself »

The continue Statement

With the continue statement we can stop the current iteration of the loop, and continue with the

next:

Example

Do not print banana:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 continue

 print(x)

https://www.w3schools.com/python/trypython.asp?filename=demo_for
https://www.w3schools.com/python/trypython.asp?filename=demo_for_string
https://www.w3schools.com/python/trypython.asp?filename=demo_for_break
https://www.w3schools.com/python/trypython.asp?filename=demo_for_break2

Try it Yourself »

The range() Function

To loop through a set of code a specified number of times, we can use the range() function,

The range() function returns a sequence of numbers, starting from 0 by default, and increments by

1 (by default), and ends at a specified number.

Example

Using the range() function:

for x in range(6):

 print(x)

Try it Yourself »

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

The range() function defaults to 0 as a starting value, however it is possible to specify the starting

value by adding a parameter: range(2, 6), which means values from 2 to 6 (but not including 6):

Example

Using the start parameter:

for x in range(2, 6):

 print(x)

Try it Yourself »

The range() function defaults to increment the sequence by 1, however it is possible to specify the

increment value by adding a third parameter: range(2, 30, 3):

Example

Increment the sequence with 3 (default is 1):

for x in range(2, 30, 3):

 print(x)

Try it Yourself »

Else in For Loop

The else keyword in a for loop specifies a block of code to be executed when the loop is finished:

Example

Print all numbers from 0 to 5, and print a message when the loop has ended:

for x in range(6):

 print(x)

else:

 print("Finally finished!")

Try it Yourself »

Note: The else block will NOT be executed if the loop is stopped by a break statement.

Example

Break the loop when x is 3, and see what happens with the else block:

for x in range(6):

 if x == 3: break

 print(x)

https://www.w3schools.com/python/trypython.asp?filename=demo_for_continue
https://www.w3schools.com/python/trypython.asp?filename=demo_for_range
https://www.w3schools.com/python/trypython.asp?filename=demo_for_range2
https://www.w3schools.com/python/trypython.asp?filename=demo_for_range3
https://www.w3schools.com/python/trypython.asp?filename=demo_for_else

else:

 print("Finally finished!")

Try it Yourself »

Nested Loops

A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each iteration of the "outer loop":

Example

Print each adjective for every fruit:

adj = ["red", "big", "tasty"]

fruits = ["apple", "banana", "cherry"]

for x in adj:

 for y in fruits:

 print(x, y)

Try it Yourself »

The pass Statement

for loops cannot be empty, but if you for some reason have a for loop with no content, put in

the pass statement to avoid getting an error.

Example

for x in [0, 1, 2]:

 pass

Python Functions

A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

A function can return data as a result.

Creating a Function

In Python a function is defined using the def keyword:

Example

def my_function():

 print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my_function():

 print("Hello from a function")

https://www.w3schools.com/python/trypython.asp?filename=demo_for_else_break
https://www.w3schools.com/python/trypython.asp?filename=demo_for_nested

my_function()

Arguments

Information can be passed into functions as arguments.

Arguments are specified after the function name, inside the parentheses. You can add as many

arguments as you want, just separate them with a comma.

The following example has a function with one argument (fname). When the function is called, we

pass along a first name, which is used inside the function to print the full name:

Example

def my_function(fname):

 print(fname + " Refsnes")

my_function("Emil")

my_function("Tobias")

my_function("Linus")

Parameters or Arguments?

The terms parameter and argument can be used for the same thing: information that are passed into

a function.

From a function's perspective:

A parameter is the variable listed inside the parentheses in the function definition.

An argument is the value that is sent to the function when it is called.

Number of Arguments

By default, a function must be called with the correct number of arguments. Meaning that if your

function expects 2 arguments, you have to call the function with 2 arguments, not more, and not

less.

Example

This function expects 2 arguments, and gets 2 arguments:

def my_function(fname, lname):

 print(fname + " " + lname)

my_function("Emil", "Refsnes")

Try it Yourself »

If you try to call the function with 1 or 3 arguments, you will get an error:

Example

This function expects 2 arguments, but gets only 1:

def my_function(fname, lname):

 print(fname + " " + lname)

my_function("Emil")

https://www.w3schools.com/python/trypython.asp?filename=demo_function_args_n

Keyword Arguments

You can also send arguments with the key = value syntax.

This way the order of the arguments does not matter.

Example

def my_function(child3, child2, child1):

 print("The youngest child is " + child3)

my_function(child1 = "Emil", child2 = "Tobias", child3 = "Linus")

Try it Yourself »

The youngest child is Linus

efault Parameter Value

The following example shows how to use a default parameter value.

If we call the function without argument, it uses the default value:

Example

def my_function(country = "Norway"):

 print("I am from " + country)

my_function("Sweden")

my_function("India")

my_function()

my_function("Brazil")

Try it Yourself »

Passing a List as an Argument

You can send any data types of argument to a function (string, number, list, dictionary etc.), and it

will be treated as the same data type inside the function.

E.g. if you send a List as an argument, it will still be a List when it reaches the function:

Example

def my_function(food):

 for x in food:

 print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

Try it Yourself »

Return Values

To let a function return a value, use the return statement:

Example

https://www.w3schools.com/python/trypython.asp?filename=demo_function_kwargs
https://www.w3schools.com/python/trypython.asp?filename=demo_function_param2
https://www.w3schools.com/python/trypython.asp?filename=demo_function_param3

def my_function(x):

 return 5 * x

print(my_function(3))

print(my_function(5))

print(my_function(9))

Try it Yourself »

The pass Statement

function definitions cannot be empty, but if you for some reason have a function definition with no

content, put in the pass statement to avoid getting an error.

Example

def myfunction():

 pass

Try it Yourself »

Recursion

Python also accepts function recursion, which means a defined function can call itself.

Recursion is a common mathematical and programming concept. It means that a function calls

itself. This has the benefit of meaning that you can loop through data to reach a result.

The developer should be very careful with recursion as it can be quite easy to slip into writing a

function which never terminates, or one that uses excess amounts of memory or processor power.

However, when written correctly recursion can be a very efficient and mathematically-elegant

approach to programming.

In this example, tri_recursion() is a function that we have defined to call itself ("recurse"). We use

the k variable as the data, which decrements (-1) every time we recurse. The recursion ends when

the condition is not greater than 0 (i.e. when it is 0).

To a new developer it can take some time to work out how exactly this works, best way to find out

is by testing and modifying it.

Example

Recursion Example

def tri_recursion(k):

 if(k > 0):

 result = k + tri_recursion(k - 1)

 print(result)

 else:

 result = 0

 return result

print("\n\nRecursion Example Results")

tri_recursion(6)

https://www.w3schools.com/python/trypython.asp?filename=demo_function_return
https://www.w3schools.com/python/trypython.asp?filename=demo_function_pass

Tryt Yourself »

Recursion Example Results

1

3

6

10

15

21

https://www.w3schools.com/python/trypython.asp?filename=demo_recursion

UNIT -2

Control Statement: Definite iteration for Loop, Formatting Text for output, Selection if and if

else Statement Conditional Iteration The While Loop

Strings and Text Files: Accessing Character and Substring in Strings, Data Encryption, Strings

and Number Systems, String Methods Text Files.

CONTROL STATEMENTS :Looping Statements

• In general, statements are executed sequentially: The first statement in a function is

executed first, followed by the second, and so on. There may be a situation when you

need to execute a block of code several number of times.

• A loop statement allows us to execute a statement or group of statements multiple times.

• Looping Statements supported by Python :

– for

– while

• There are two types of loops—

– those that repeat an action a predefined number of times(definite iteration),

and

– those that perform the action until the program determines that it needs to stop

(indefinite iteration).

1 Definite iteration for Loop

• Executing a Statement a Given Number of Times

– The form of this type of for loop is

for <variable> in range(<an integer expression>):

<statement-1>

.

.

<statement-n>

• The first line of code in a loop is sometimes called the loop header,which denotes the

number of iterations that the loop performs.

– The colon (:) ends the loop header.

• The loop body comprises the statements in the remaining lines of code, below the

header.These statements are executed in sequence on each pass through the loop.

– The statements in the loop body must be indented and aligned in the same

column.

>>> for i in range(4):

print(i)

0

1

2

3

Count-Controlled Loops:

• Loops that count through a range of numbers are also called count-controlled loops.

• The value of the count on each pass is often used in computations.

• To count from an explicit lower bound, the programmer can supply a second integer

expression in the loop header. When two arguments are supplied to range, the count ranges

from the first argument to the second argument minus 1

• The only thing in this version to be careful about is the second argument of range, which

should specify an integer greater by 1 than the desired upper bound of the count.

• Here is the form of this version of the for loop:

for <variable> in range(<lower bound>, <upper bound + 1>):

<loop body>

>>>for i in range(5,10):

print(i)

5

6

7

8

9

Loop Errors: Off-by-One Error:

• The loop fails to perform the expected number of iterations. Because this number is

typically off by one, the error is called an off-by-one error

Traversing the Contents of a Data Sequence:

The values contained in any sequence can be visited by running a for loop , as follows:

for <variable> in <sequence>:

<do something with variable>

– On each pass through the loop, the variable is bound to or assigned the next value in the

sequence, starting with the first one and ending with the last one.

>>> name="Surya Lakshmi"

>>> nl=[45,36,644]

>>> nt=(4,22,6,1)

>>> for i in name: #Traversing string

print(i,end=",")

S,u,r,y,a, ,L,a,k,s,h,m,i,

>>>for i in nl: #Traversing list

print(i,end=",")

45,36,644,

>>>for i in nt: #Traversing tuple

print(i,end=",")

4,22,6,1,

Specifying the Steps in the Range :

• A variant of Python’s range function expects a third argument that allows you to nicely

skip some numbers.

• The third argument specifies a step value, or the interval between the numbers used in the

range, as shown in the examples that follow:

>>> list(range(1, 6, 1)) # Same as using two arguments

[1, 2, 3, 4, 5]

>>> list(range(1, 6, 2)) # Use every other number

 [1, 3, 5]

>>> list(range(1, 6, 3)) # Use every third number

[1, 4]

Loops That Count Down

• Once in a while, a problem calls for counting in the opposite direction, from the upper

bound down to the lower bound.

• a loop displays the count from 10 down to 1 to show how this would be done:

>>> for count in range(10, 0, -1):

print(count, end = " ")

10 9 8 7 6 5 4 3 2 1

• When the step argument is a negative number, the range function generates a sequence

of numbers from the first argument down to the second argument plus 1.

2. Conditional Iteration: The while Loop

• A loop continues to repeat as long as a condition remains true.This is called Conditional

iteration

• The Structure and Behavior of a while Loop :

• Conditional iteration requires that a condition be tested within the loop to determine

whether the loop should continue. Such a condition is called the loop’s continuation

condition.

– If the continuation condition is false, the loop ends.

– If the continuation condition is true, the statements within the loop are executed

again.

• Syntax:

while <condition>:

<sequence of statements>

• The while loop is also called an entry-control loop, because its condition is tested at

the top of the loop.

• This implies that the statements within the loop can execute zero or more times.

Summation with a while loop

theSum = 0

count = 1

while count <= 10:

theSum += count

count += 1

print(theSum)

• The while loop is also called an entry-control loop, because its condition is tested at

the top of the loop.

– This implies that the statements within the loop can execute zero or more times.

The while True Loop and the break Statement

• If the loop must run at least once, use a while True loop and delay the examination of

the termination condition until it becomes available in the body of the loop.

• Ensure that something occurs in the loop to allow the condition to be checked and a

break statement to be reached eventually.

while True:

number = int(input("Enter the numeric grade: "))

if number >= 0 and number <= 100:

print(number) # Just echo the valid input

break

else:

print("Error: grade must be between 100 and 0")

OUTPUT

A trial run with just this segment shows the following interaction:

Enter the numeric grade: 101

Error: grade must be between 100 and 0

Enter the numeric grade: –1

Error: grade must be between 100 and 0

Enter the numeric grade: 45

45

Random Numbers

• To simulate randomness in computer applications, programming languages include

resources for generating random numbers.

• The function random.randint (from module random) returns a random number from

among the numbers between the two arguments and including those numbers.

• The next session simulates the roll of die 10 times:

>>> import random

>>> for roll in range(10):

print(random.randint(1, 6), end = " ")

2 4 6 4 3 2 3 6 2 2

3. Formatting Text for output

• Many data-processing applications require output that has a tabular format, like that

used in spreadsheets or tables of numeric data.

• In this format, numbers and other information are aligned in columns that can be either

left-justified or right-justified.

– A column of data is left-justified if its values are vertically aligned beginning

with their leftmost characters.

– A column of data is right-justified if its values are vertically aligned beginning

with their rightmost characters.

• The total number of data characters and additional spaces for a given datum in a

formatted string is called its field width.

FORMATTING STRING:

• The simplest form of this operation is the following:

<format string> % <datum>

• The following example shows how to right-justify and left- justify the string "four"

within a field width of 6:

>>> "%6s" % "four" # Right justify

' four'

>>> "%-6s" % "four“ # Left justify

'four '

• When the field width is positive, the datum is right-justified; when the field width is

negative, you get left-justification.

• If the field width is less than or equal to the datum’s print length in characters, no

justification is added.

• The % operator works with this information to build and return a formatted string.

FORMATTING INTEGERS:

• To format integers, you use the letter d instead of s.

• To format a sequence of data values, you construct a format string that includes a format

code for each datum and place the data values in a tuple following the % operator.

• The form of the second version of this operation follows:

<format string> % (<datum–1>, ..., <datum–n>)

WITHOUT FORMATTING (integers):

>>> for exponent in range(7, 11):

print(exponent, 10 ** exponent)

7 10000000

8 100000000

9 1000000000

10 10000000000

WITH FORMATTING (integers):

• The first column is left-justified in a field width of 3, and the second column is

right-justified in a field width of 12.

>>> for exponent in range(7, 11):

print("%-3d%12d" % (exponent, 10 ** exponent))

7 10000000

8 100000000

9 1000000000

10 10000000000

FORMATTING FLOAT:

• The format information for a data value of type float has the form

%<field width>.<precision>f

where .<precision> is optional.

• Example of the use of a format string, which says to use a field width of 6 and a

precision of 3 to format the float value 3.14:

>>> "%6.3f" % 3.14

' 3.140'

• Note that Python adds a digit of precision to the string and pads it with a space to the

left to achieve the field width of 6. This width includes the place occupied by the

decimal point.

4. Strings

• E-mail, text messaging, Web pages, and word processing all rely on and manipulate

data consisting of strings of characters.

• A string is a sequence of characters enclosed in single or double quotation marks.

• The following session with the Python shell shows some example strings:

>>> 'Hello there!'

'Hello there!'

>>> "Hello there!"

'Hello there!'

>>> ''

''

>>> ""

''

Accessing Character and Substring in Strings

The Structure of Strings:

• A string is a data structure i.e., it is a compound unit that consists of several other

pieces of data.

• A string is a sequence of zero or more characters.

• The string is an immutable data structure. This means that its internal data elements,

the characters, can be accessed, but cannot be replaced, inserted, or removed.

• A string’s length is the number of characters it contains. Python’s len function returns

this value when it is passed a string, as shown in the following session:

>>> len("Hi there!")

9

>>> len("")

0

• The positions of a string’s characters are numbered from 0, on the left, to the length of

the string minus 1, on the right.

• The following figure illustrates the sequence of characters and their positions in the

string "Hi there!".

• Note that the ninth and last character, '!', is at position 8.

The Subscript Operator:

• The subscript operator [] inspects one character at a given position without visiting

all the characters in a given string / sequence.

• The simplest form of the subscript operation is the following:

<a string>[<integer or index>]

• The first part of this operation is the string you want to inspect.

• The integer in brackets is the index that indicates the position of a particular character

in that string.

>>> name = "Alan Turing"

>>> name[0] # Examine the first character

'A'

>>> name[3] # Examine the fourth character

'n'

>>> name[len(name)] # Oops! An index error!

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: string index out of range

>>> name[len(name) - 1] # Examine the last character

'g'

>>> name[-l] # Shorthand for the last character

'g'

>>> name[-2] # Shorthand for next to last character

'n'

• The next code segment uses a count-controlled loop to display the characters and their

positions:

>>> data = "Hi there!"

>>> for index in range(len(data)):

print(index, data[index])

0 H

1 I

2

3 t

4 h

5 e

6 r

7 e

8 !

Slicing for Substrings :

• You can use Python’s subscript operator to obtain a substring through a process called

slicing.

• To extract a substring, the programmer places a colon (:) in the subscript. An integer

value can appear on either side of the colon

• When two integer positions are included in the slice, the range of characters in the

substring extends from the first position up to but not including the second position.

• When the integer is omitted on either side of the colon, all of the characters extending

to the end or the beginning are included in the substring

>>> name="Surya Lakshmi"

>>> name[:]

'Surya Lakshmi'

>>> name[0:5]

'Surya'

>>> name[0:]

'Surya Lakshmi'

>>> name[4:7]

'a L'

name[-4:-1]

'shm'

Testing for a Substring with the in Operator:

• When used with strings, the left operand of in is a target substring, and the right operand

is the string to be searched.

• The operator in returns True if the target string is somewhere in the search string, or

False otherwise.

name="Surya Lakshmi"

>>> "z" in name

False

>>> "u" in name

True

>>> "Lak" in name

True

5. Strings and Number Systems

• The system used to represent numbers are called number systems. Various number

systems are:

– decimal number system(base ten number system)

– binary number system (base two number system)

– octal number system (base eight number system)

– hexadecimal number system (base 16 number system)

• To identify the system being used, you attach the base as a subscript to the number.

• For example, the following numbers represent the quantity 41510 in the binary, octal,

decimal, and hexadecimal systems:

– 415 in binary notation 1100111112

– 415 in octal notation 6378

– 415 in decimal notation 41510

– 415 in hexadecimal notation 19F16

The Positional System for Representing Numbers

• All of the number systems we have examined use positional notation—that is, the

value of each digit in a number is determined by the digit’s position in the number.

• In other words, each digit has a positional value. The positional value of a digit is

determined by raising the base of the system to the power specified by the position

(base position).

• To determine the quantity represented by a number in any system from base 2 through

base 10, you multiply each digit (as a decimal number) by its positional value and add

the results.

• The following example shows how this is done for a three-digit number in base 10:

Converting Binary to Decimal

• Each digit or bit in a binary number has a positional value that is a power of 2.

• We occasionally refer to a binary number as a string of bits or a bit string.

• Determine the integer quantity that a string of bits represents in the usual manner:

Multiply the value of each bit (0 or 1) by its positional value and add the results

• Python script to convert binary number to decimal number

bitString = input("Enter a string of bits: ")

decimal = 0

exponent = len(bitString) - 1

for digit in bitString:

decimal = decimal + int(digit) * 2 ** exponent

exponent = exponent - 1

print("The integer value is", decimal)

OUTPUT :

Enter a string of bits: 1111

The integer value is 15

Enter a string of bits: 101

The integer value is 5

Converting Decimal to Binary:

• This algorithm repeatedly divides the given decimal number by 2.

• After each division, the remainder (either a 0 or a 1) is placed at the beginning of a

string of bits.

• The quotient becomes the next dividend in the process. The string of bits is initially

empty, and the process continues while the decimal number is greater than 0.

Python script to convert decimal number to binary number

decimal = int(input("Enter a decimal integer: "))

if (decimal == 0):

print(0)

else:

print("Quotient Remainder Binary")

bitString = ""

while decimal > 0:

remainder = decimal % 2

decimal = decimal // 2

bitString = str(remainder) + bitString

print("%5d%8d%12s" % (decimal, remainder,bitString))

print("The binary representation is", bitString)

Enter a decimal integer: 34

Quotient Remainder Binary

17 0 0

8 1 10

4 0 010

2 0 0010

1 0 00010

0 1 100010

The binary representation is 100010

Octal Numbers

• The octal system uses a base of eight and the digits 0 . . . 7.

• Conversions of octal to decimal and decimal to octal use algorithms similar to those

discussed thus far (using powers of 8 and multiplying or dividing by 8, instead of 2).

• To convert binary to octal, you begin at the right and factor the bits into groups of three

bits each. You then convert each group of three bits to the octal digit they represent.

Hexadecimal Numbers:

• The hexadecimal or base-16 system (called “hex” for short), which uses 16 different

digits, provides a more concise notation than octal for larger numbers.

• Base 16 uses the digits 0 . . . 9 for the corresponding integer quantities and the letters

A . . . F for the integer quantities 10 . . . 15.

• The conversion between numbers in the two systems works as follows.

• Each digit in the hexadecimal number is equivalent to four digits in the binary number.

• Thus, to convert from hexadecimal to binary, you replace each hexadecimal digit with

the corresponding 4-bit binary number.

• To convert from binary to hexadecimal, you factor the bits into groups of four and look

up the corresponding hex digits.

5 String Methods :

Examples :

>>> s = "Hi there!"

>>> len(s)

9

>>> s.center(11)

' Hi there! '

>>> s.count('e')

2

>>> s.endswith("there!")

True

>>> s.startswith("Hi")

True

>>> s.find("the")

3

>>> s.isalpha()

False

>>> 'abc'.isalpha()

True

>>> "326".isdigit()

True

>>> words = s.split()

>>> words

['Hi', 'there!']

>>> " ".join(words)

'Hithere!'

>>> " ". join(words)

'Hi there!'

>>> s.lower()

'hi there!'

>>> s.upper()

'HI THERE!'

>>> s.replace('i', 'o')

'Ho there!'

>>> " Hi there! ".strip()

'Hi there!'

6) Data Encryption

• Data travelling on the Internet is vulnerable to spies and potential thieves.

• It is easy to observe data crossing a network, particularly now that more and more

communications involve wireless transmissions.

– For example, a person can sit in a car in the parking lot outside any major hotel

and pick up transmissions between almost any two computers if that person runs

the right sniffing software

– Data encryption is a security method where information is encoded and can

only be accessed or decrypted by a user with the correct encryption key.

• The sender encrypts a message by translating it to a secret code, called a cipher text.

• At the other end, the receiver decrypts the cipher text back to its original plaintext form.

• Both parties to this transaction must have at their disposal one or more keys that allow

them to encrypt and decrypt messages.

 Caesar cipher:

• This encryption strategy replaces each character in the plaintext with the character that

occurs a given distance away in the sequence.

• For positive distances, the method wraps around to the beginning of the sequence to

locate the replacement characters for those characters near its end.

• For example, if the distance value of a Caesar cipher equals three characters, the string

"invaders" would be encrypted as “lqydghuv“

• To decrypt this cipher text back to plaintext, you apply a method that uses the same

distance value but looks to the left of each character for its replacement.

• This decryption method wraps around to the end of the sequence to find a replacement

character for one near its beginning

Python Script to encrypt plain text to cipher text using Caesar Cipher

plainText = input("Enter a one-word, lowercase message: ")

distance = int(input("Enter the distance value: "))

code = ""

for ch in plainText:

ordvalue = ord(ch)

cipherValue = ordvalue + distance

if cipherValue > ord('z'):

cipherValue = ord('a') + distance - (ord('z') - ordvalue + 1)

code += chr(cipherValue)

print(code)

OUTPUT :

>>>Enter a one-word, lowercase message: python

Enter the distance value: 3

sbwkrq

>>>Enter a one-word, lowercase message: xyz

Enter the distance value: 3

abc

Python Script to encrypt cipher text to plain text using Caesar Cipher

code = input("Enter the coded text: ")

distance = int(input("Enter the distance value: "))

plainText = ""

for ch in code:

ordvalue = ord(ch)

cipherValue = ordvalue - distance

if cipherValue < ord('a'):

cipherValue = ord('z') - (distance + (ord('a') - ordvalue - 1))

plainText += chr(cipherValue)

print(plainText)

OUTPUT :

>>>Enter the coded text: sbwkrq

Enter the distance value: 3

python

>>>Enter the coded text: abc

Enter the distance value: 3

xyz

• The main shortcoming of this encryption strategy is that the plaintext is encrypted one

character at a time, and each encrypted character depends on that single character and

a fixed distance value.

• In a sense, the structure of the original text is preserved in the cipher text, so it might

not be hard to discover a key by visual inspection.

 Block cipher:

• A block cipher uses plaintext characters to compute two or more encrypted characters.

• This is accomplished by using a mathematical structure known as an invertible matrix

to determine the values of the encrypted characters.

• The matrix provides the key in this method. The receiver uses the same matrix to

decrypt the cipher text.

• The fact that information used to determine each character comes from a block of data

makes it more difficult to determine the key

UNIT- 3

LISTS , DICTIONARIES, FUNCTIONS AND MODULES

List and Dictionaries: Lists, Defining Simple Functions, Dictionaries.

Design with Function: Functions as Abstraction Mechanisms, Problem Solving with Top Down

Design, Design with Recursive Functions, Case Study Gathering Information from a File System,

Managing a Program’s Namespace, Higher Order Function.

Modules: Modules, Standard Modules, Packages

Lists :

• A list is a sequence of data values called items or elements. An item can be of any type.

• Here are some real-world examples of lists:

– A shopping list for the grocery store

– A to-do list

– A roster for an athletic team

– A guest list for a wedding

– A recipe, which is a list of instructions

– A text document, which is a list of lines

– The names in a phone book

• Each of the items in a list is ordered by position.

• Like a character in a string, each item in a list has a unique index that specifies its

position.

• The index of the first item is 0, and the index of the last item is the length of the list

minus 1

List Literals and Basic Operators :

• In Python, a list literal is written as a sequence of data values separated by commas.

• The entire sequence is enclosed in square brackets ([and]).

• Here are some example list literals:

• [1951, 1969, 1984] # A list of integers

• ["apples", "oranges", "cherries"] # A list of strings

• [] # An empty list

• You can also use other lists as elements in a list, thereby creating a list of lists. Here is

one example of such a list:

• [[5, 9], [541, 78]]

• The Python interpreter evaluates a list literal, and each of the elements are also

evaluated if required

>>> import math

>>> x = 2

>>> [x, math.sqrt(x)]

[2, 1.4142135623730951]

>>> [x + 1]

[3]

• You can also build lists of integers using the range and list functions

>>> second = list(range(1, 5))

>>> second

[1, 2, 3, 4]

• The list function can build a list from any iterable sequence of elements, such as a

string:

>>> third = list("Hi there!")

>>> third

['H', 'i', ' ' , 't', 'h', 'e', 'r', 'e', '!']

List Methods :

• append() and extend() :

• The method append expects just the new element as an argument and adds the new

element to the end of the list.

• The method extend performs a similar operation, but adds the elements of its list

argument to the end of the list.

>>> example = [1, 2]

>>> example

[1, 2]

>>> example.append(3)

>>> example

[1, 2, 3]

>>> example.extend([11, 12, 13])

>>> example

[1, 2, 3, 11, 12, 13]

>>> example + [14, 15]

[1, 2, 3, 11, 12, 13, 14, 15]

>>> example

[1, 2, 3, 11, 12, 13]

• pop() :

• The method pop is used to remove an element at a given position. If the position is

not specified, pop removes and returns the last element.

• In that case, the elements that followed the removed element are shifted one position

to the left

>>> example

[1, 2, 10, 11, 12, 13]

>>> example.pop() # Remove the last element

13

>>> example

[1, 2, 10, 11, 12]

>>> example.pop(0) # Remove the first element

1

>>> example

[2, 10, 11, 12]

• Searching a List

• first use the in operator to test for presence and then the index method if this test

returns True.

• The next code segment shows how this is done for an example list and target

element:

 3

aList = [34, 45, 67]

target = 45

if target in aList:

print(aList.index(target))

else:

print(-l)

• Sorting a List :

• When the elements can be related by comparing them for less than and greater

than as well as equality, they can be sorted.

• The list method sort mutates a list by arranging its elements in ascending order

>>> example = [4, 2, 10, 8]

>>> example

[4, 2, 10, 8]

>>> example.sort()

>>> example

[2, 4, 8, 10]

NOTE:

• Mutator Methods and the Value None :

• Mutable objects (such as lists) have some methods devoted entirely to modifying

the internal state of the object. Such methods are called mutators. Examples

are the list methods insert, append, extend, pop, and sort

Dictionaries:

• A dictionary organizes information by association, not position.

• For example, when you use an english dictionary to look up the definition of

“mammal,” you don’t start at page 1; instead, you turn directly to the words beginning

with “M.”

• Phone books, address books, encyclopedias, and other reference sources also

organize information by association.

• In computer science, data structures organized by association are also called tables or

association lists.

• In Python, a dictionary associates a set of keys with values.

Dictionary Literals:

• A Python dictionary is written as a sequence of key/value pairs separated by commas.

• These pairs are sometimes called entries. The entire sequence of entries is enclosed

in curly braces ({ and }).

• A colon (:) separates a key and its value. Here are some example dictionaries:

– phonebook= {"Savannah":"476-3321", "Nathaniel":"351-7743"}

– Info={"Name":"Molly", "Age":18}

• You can even create an empty dictionary—that is, a dictionary that contains no entries.

– {}

Adding Keys and Replacing Values :

• You add a new key/value pair to a dictionary by using the subscript operator []. The

form of this operation is the following:

» <a dictionary>[<a key>] = <a value>

• The next code segment creates an empty dictionary and adds two new entries:

>>> info = {}

>>> info["name"] = "Sandy"

>>> info["occupation"] = "hacker"

>>> info

{'name':'Sandy', 'occupation':'hacker'}

• The subscript is also used to replace a value at an existing key, as follows:

>>> info["occupation"] = "manager"

>>> info

{'name':'Sandy', 'occupation':'manager'}

• The same operation is used for two different purposes: insertion of a new entry and

modification of an existing entry.

Accessing Values :

• You can also use the subscript to obtain the value associated with a key. However, if

the key is not present in the dictionary, Python raises an exception.

>>>info["name"]

'Sandy'

>>> info["job"]

Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>

info["job"]

KeyError: 'job'

Removing Keys :

• To delete an entry from a dictionary, one removes its key using the method pop.

• This method expects a key and an optional default value as arguments.

• If the key is in the dictionary, it is removed, and its associated value is returned.

Otherwise, the default value is returned

Traversing a Dictionary :

 When a for loop is used with a dictionary, the loop’s variable is bound to each key in an

unspecified order. The next code segment prints all of the keys and their values in our info

dictionary:

>>>info ={“name”:”Surya”,”phone”:9876543211}

>>>for key in info:

print(key, info[key])

phone 9876543211

name Surya

 The entries are represented as tuples within the list. A tuple of variables can then access the

key and value of each entry in this list within a for loop:

>>>for (key, value) in info.items():

print(key, value)

Gives same output as the previous one

 On each pass through the loop, the variables key and value within the tuple are assigned the

key and value of the current entry in the list. The use of a structure containing variables to

access data within another structure is called pattern matching.

Dictionary Operations :

d={1:1,2:2**3,3:3**3,4:4**3,5:5**3,6:6**3}

>>> d

{1: 1, 2: 8, 3: 27, 4: 64, 5: 125, 6: 216}

>>> len(d)

6

>>> d[5]

125

>>> d.get(4)

64

>>>d.pop(4)

64

>>> d

{1: 1, 2: 8, 3: 27, 5: 125, 6: 216}

>>> d.keys()

dict_keys([1, 2, 3, 5, 6])

>>> d.values()

dict_values([1, 8, 27, 125, 216])

>>> d.items()

dict_items([(1, 1), (2, 8), (3, 27), (5, 125), (6, 216)])

>>> d.clear()

>>> d

{}

Conversion of hexadecimal to Binary:

• The algorithm visits each digit in the hexadecimal number, selects the corresponding four

bits that represent that digit in binary, and adds these bits to a result string.

• If you maintain the set of associations between hexadecimal digits and binary digits in a

dictionary, then you can just look up each hexadecimal digit’s binary equivalent with a

subscript operation. Such a dictionary is sometimes called a lookup table. Here is the

definition of the lookup table required for hex-to-binary conversions:

• hexToBinaryTable = {'0':'0000', '1':'0001', '2':'0010', '3':'0011', '4':'0100', '5':'0101',

'6':'0110', '7':'0111', '8':'1000', '9':'1001', 'A':'1010', 'B':'1011', 'C':'1100', 'D':'1101', 'E':'1110',

'F':'1111'}

def convert(number, table):

binary = ""

for digit in number:

binary = binary + table[digit]

return binary

>>> convert("35A", hexToBinaryTable)

'001101011010'

FUNCTIONS:

1. Design with Function

• A function packages an algorithm in a chunk of code that you can call by name

• A function can be called from anywhere in a program’s code, including code within

other functions

• A function can receive data from its caller via arguments

• When a function is called, any expressions supplied as arguments are first evaluated.

• Their values are copied to temporary storage locations named by the parameters in the

function’s definition

• A function may have one or more return statements, whose purpose is to terminate the

execution of the function and return control to its caller. A return statement may be

followed by an expression.

 Functions as Abstraction Mechanisms

• Human brain can wrap itself around just a few things at once , People cope with

complexity by developing a mechanism to simplify or hide it. This mechanism is called

an abstraction.

• An abstraction hides detail and thus allows a person to view many things as just one

thing

• “doing my laundry” : This expression is simple, but it refers to a complex process that

involves

– fetching dirty clothes from the hamper,

– separating them into whites and colors,

– loading them into the washer,

– Transferring them to the dryer, and

– folding them and

– putting them into the dresser

• Without abstractions, most of our everyday activities would be impossible to discuss,

plan, or carry out. Likewise, effective designers must invent useful abstractions to

control complexity.

 Functions Eliminate Redundancy

• The first way that functions serve as abstraction mechanisms is by eliminating

redundant, or repetitious, code.

• To explore the concept of redundancy, let’s look at a function named summation, which

returns the sum of the numbers within a given range of numbers.

def summation(lower, upper):

result = 0

while lower <= upper:

result += lower

lower += 1

return result

>>> summation(1,4) # The summation of the numbers 1..4

10

>>> summation(50,100) # The summation of the numbers 50..100

3825

• Code redundancy is bad for several reasons. For one thing, it requires the programmer

to laboriously enter or copy the same code over and over, and to get it correct every

time.

• Then, if the programmer decides to improve the algorithm by adding a new feature or

making it more efficient, he or she must revise each instance of the redundant code

throughout the entire program leading to many maintainance problems

• By relying on a single function definition, instead of multiple instances of redundant

code, the programmers free themselves to write only a single algorithm in just one

place—say, in a library module.

• Any other module or program can then import the function for its use. Once imported,

the function can be called as many times as necessary.

• When the programmer needs to debug, repair, or improve the function, she needs to edit

and test only the single function definition. There is no need to edit the parts of the

program that call the function

 Functions Hide Complexity

• Functions serve as abstraction mechanisms is by hiding complicated details.

• A function call expresses the idea of a process to the programmer, without forcing him

or her to wade through the complex code that realizes that idea

– In summation function, although the idea of summing a range of numbers is

simple, the code for computing a summation is not.

– There are three variables to manipulate, as well as count-controlled loop logic

to construct.

 Functions Support General Methods with Systematic Variations

• An algorithm is a general method for solving a class of problems. The individual

problems that make up a class of problems are known as problem instances.

• The problem instances for the summation algorithm are the pairs of numbers that specify

the lower and upper bounds of the range of numbers to be summed.

• The summation function contains both the code for the summation algorithm and the

means of supplying problem instances to this algorithm. The problem instances are the

data sent as arguments to the function.

 Functions Support the Division of Labor

• In a computer program, functions can enforce a division of labor.

• Ideally, each function performs a single coherent task, such as computing a summation

or formatting a table of data for output.

• Each function is responsible for using certain data, computing certain results, and

returning these to the parts of the program that requested them.

• Each of the tasks required by a system can be assigned to a function, including the tasks

of managing or coordinating the use of other functions.

2 . Problem Solving with Top-Down Design

• The top down strategy starts with a global view of the entire problem and breaks the

problem into smaller, more manageable sub problems—a process known as problem

decomposition.

• As each subproblem is isolated, its solution is assigned to a function. Problem

decomposition may continue down to lower levels, because a subproblem might in turn

contain two or more lower-level problems to solve.

• As functions are developed to solve each subproblem, the solution to the overall

problem is gradually filled out in detail. This process is also called stepwise refinement.

 The Design of the Text-Analysis Program

• The program requires simple input and output components, so these can be expressed

as statements within a main function.

• The processing of the input is complex enough to decompose into smaller subprocesses,

such as obtaining the counts of the sentences, words, and syllables and calculating the

readability scores.

• We develop a new function for each of these computational tasks. The relationships

among the functions in this design are expressed in the structure chart

Structure chart

• A structure chart is a diagram that shows the relationships among a program’s

functions and the passage of data between them.

• Each box in the structure chart is labeled with a function name. The main function at

the top is where the design begins, and decomposition leads us to the lower-level

functions on which main depends.

• The lines connecting the boxes are labeled with data type names, and arrows indicate

the flow of data between them. For example, the function countSentences takes a string

as an argument and returns the number of sentences in that string.

• Note that all functions except one are just one level below main

3 . Design with Recursive Functions

• In some cases of top down design , you can decompose a complex problem into smaller

problems of the same form.

– In these cases, the subproblems can all be solved by using the same function.

This design strategy is called recursive design, and the resulting functions are

called recursive functions.

Defining a Recursive Function :

• A recursive function is a function that calls itself.

• To prevent a function from repeating itself indefinitely, it must contain at least one

selection statement. This statement examines a condition called a base case to determine

whether to stop or to continue with another recursive step.

#Python recursive function for summation

def summation(lower, upper):

"""Returns the sum of the numbers from lower through upper."""

if lower > upper:

return 0

else:

return lower + summation (lower + 1, upper)

The recursive call of summation adds up the numbers from lower + 1 through upper .The

function then adds lower to this result and returns it.

Using Recursive Definitions to Construct Recursive Functions

• A recursive definition consists of equations that state what a value is for one or

more base cases and one or more recursive cases.

• For example, the Fibonacci sequence is a series of values with a recursive definition.

The first and second numbers in the Fibonacci sequence are 1. Thereafter, each number

in the sequence is the sum of its two predecessors, as follows:

1 1 2 3 5 8 13 . . .

• More formally, a recursive definition of the nth Fibonacci number is the following:

Fib(n) = 1, when n = 1 or n = 2

Fib(n) = Fib(n - 1) + Fib(n - 2), for all n > 2

• Given this definition, you can construct a recursive function that computes and returns

def fib(n):

"""Returns the nth Fibonacci number."""

if n < 3:

return 1

else:

return fib(n - 1) + fib(n - 2)

Infinite Recursion:

• Infinite recursion arises when the programmer fails to specify the base case or to reduce

the size of the problem in a way that terminates the recursive process.

• In fact, the Python virtual machine eventually runs out of memory resources to manage

the process, so it halts execution with a message indicating a stack overflow error.

• The next session defines a function that leads to this result:

def runForever(n):

if n > 0:

runForever(n)

else:

runForever(n - 1)

>>> runForever(1)

Traceback (most recent call last):

File "<pyshell#6>", line 1, in <module>

runForever(1)

File "<pyshell#5>", line 3, in runForever

runForever(n)

File "<pyshell#5>", line 3, in runForever

runForever(n)

File "<pyshell#5>", line 3, in runForever

runForever(n)

[Previous line repeated 989 more times]

File "<pyshell#5>", line 2, in runForever

if n > 0:

RecursionError: maximum recursion depth exceeded in comparison

The PVM keeps calling runForever(1) until there is no memory left to support another

recursive call. Unlike an infinite loop, an infinite recursion eventually halts execution with an

error message.

The Costs and Benefits of Recursion :

 The run-time system on a real computer, such as the PVM(Python Virtual Machine),

must devote some overhead to recursive function calls.

 At program startup, the PVM reserves an area of memory named a call stack. For each

call of a function, recursive or otherwise, the PVM must allocate on the call stack a

small chunk of memory called a stack frame.

 In this type of storage, the system places the values of the arguments and the return

address for each function call. Space for the function call’s return value is also reserved

in its stack frame.

 When a call returns or completes its execution, the return address is used to locate the

next instruction in the caller’s code, and the memory for the stack frame is deallocated.

 When, because of a design error, the recursion is infinite, the stack frames are added

until the PVM runs out of memory, which halts the program with an error message.

4. Case Study Gathering Information from a File System

• Modern file systems come with a graphical browser, allowing the user to navigate to

files or folders by selecting icons of folders, opening these by double-clicking, and

selecting commands from a drop-down menu. Information on a folder or a file, such as

the size and contents, is also easily obtained in several ways.

• Users of terminal-based user interfaces must rely on entering the appropriate commands

at the terminal prompt to perform these functions.

• In this case study, we develop a simple terminal-based file system navigator that

provides some information about the system.

• In the process, we will have an opportunity to exercise some skills in top-down design

and recursive design.

Request:

Write a program that allows the user to obtain information about the file system.

Analysis:

import os, os.path

QUIT = '7'

COMMANDS = ('1', '2', '3', '4', '5', '6', '7')

MENU = """1 List the current directory

2 Move up

3 Move down

4 Number of files in the directory

5 Size of the directory in bytes

6 Search for a filename

7 Quit the program"""

def main():

while True:

print(os.getcwd())

print(MENU)

command = acceptCommand() #takes choice

runCommand(command)

if command == QUIT:

print("Have a nice day!")

break

def acceptCommand():

"""Inputs and returns a legitimate command number."""

command = input("Enter a number: ")

if command in COMMANDS:

return command

else:

print("Error: command not recognized")

return acceptCommand()

def runCommand(command):

"""Selects and runs a command."""

if command == '1':

listCurrentDir(os.getcwd())

elif command == '2':

moveUp()

elif command == '3':

moveDown(os.getcwd())

elif command == '4':

print("The total number of files is", \

countFiles(os.getcwd()))

elif command == '5':

print("The total number of bytes is", \

countBytes(os.getcwd()))

elif command == '6':

target = input("Enter the search string: ")

fileList = findFiles(target, os.getcwd())

if not fileList:

print("String not found")

else:

for f in fileList:

print(f)

def listCurrentDir(dirName):

"""Prints a list of the cwd's contents."""

lyst = os.listdir(dirName)

for element in lyst:

print(element)

def moveUp():

"""Moves up to the parent directory."""

os.chdir("..")

def moveDown(currentDir):

"""Moves down to the named subdirectory if it exists."""

newDir = input("Enter the directory name: ")

if os.path.exists(currentDir + os.sep + newDir) and os.path.isdir(newDir):

os.chdir(newDir)

else:

print("ERROR: no such name")

def countFiles(path):

"""Returns the number of files in the cwd and all its subdirectories."""

count = 0

lyst = os.listdir(path)

for element in lyst:

if os.path.isfile(element):

count += 1

else:

os.chdir(element)

count += countFiles(os.getcwd())

os.chdir("..")

return count

def countBytes(path):

"""Returns the number of bytes in the cwd and all its subdirectories."""

count = 0

lyst = os.listdir(path)

for element in lyst:

if os.path.isfile(element):

count += os.path.getsize(element)

else:

os.chdir(element)

count += countBytes(os.getcwd())

os.chdir("..")

return count

def findFiles(target, path):

"""Returns a list of the filenames that contain the target string in the cwd and all its

subdirectories."""

files = []

lyst = os.listdir(path)

for element in lyst:

if os.path.isfile(element):

if target in element:

files.append(path + os.sep + element)

else:

os.chdir(element)

files.extend(findFiles(target, os.getcwd()))

os.chdir("..")

return files

if name == " main ":

main()

5. Managing a Program’s Namespace

Namespaces in Python

• A namespace is a collection of currently defined symbolic names along with information

about the object that each name references.

• You can think of a namespace as a dictionary in which the keys are the object names

and the values are the objects themselves.

– Each key-value pair maps a name to its corresponding object

• In a Python program, there are four types of namespaces:

– Built-In

– Global

– Enclosing

– Local

i) The Built-In Namespace

• The built-in namespace contains the names of all of Python’s built-in objects. These

are available at all times when Python is running.

• You can list the objects in the built-in namespace with the following command:

>>> dir(builtins)

The Python interpreter creates the built-in namespace when it starts up. This

namespace remains in existence until the interpreter terminates.

ii) The Global Namespace

• The global namespace contains any names defined at the level of the main program.

• Python creates the global namespace when the main program body starts, and it remains

in existence until the interpreter terminates.

• The interpreter also creates a global namespace for any module that your program loads

with the import statement.

iii) The Local and Enclosing Namespaces

The interpreter creates a new namespace whenever a function executes. That namespace is

local to the function and remains in existence until the function terminates

def f():

print('Start f()')

https://realpython.com/python-dicts
https://realpython.com/absolute-vs-relative-python-imports/

def g():

print('Start g()')

print('End g()')

return

g()

print('End f()')

return

Output :

>>> f()

Start f()

Start g()

End g()

End f()

• When the main program calls f(), Python creates a new namespace for f(). Similarly,

when f() calls g(), g() gets its own separate namespace.

• The namespace created for g() is the local namespace, and the namespace created

for f() is the enclosing namespace.

• Each of these namespaces remains in existence until its respective function terminates.

Scope:

• In Python, a name’s scope is the area of program text in which the name refers to a given

value

• In general, the meanings of temporary variables are restricted to the body of the

functions in which they are introduced, and they are invisible elsewhere in a module.

• The restricted visibility of temporary variables befits their role as temporary working

storage for a function.

• Although a Python function can reference a module variable for its value, it cannot

under normal circumstances assign a new value to a module variable.

• When such an attempt is made, the PVM creates a new, temporary variable of the same

name within the function.

• The following script shows how this works:

x = 5

def f():

x = 10 # Attempt to reset x

f() # Does the top-level x change?

print(x) # No, this displays 5

• When the function f is called, it does not assign 10 to the module variable x; instead, it

assigns 10 to a temporary variable x.

• In fact, once the temporary variable is introduced, the module variable is no longer

visible within function f. In any case, the module variable’s value remains unchanged

by the call

Lifetime:

• A variable’s lifetime is the period of time during program execution when the variable

has memory storage associated with it.

• When a variable comes into existence, storage is allocated for it; when it goes out of

existence, storage is reclaimed by the PVM.

• The concept of lifetime explains the existence of two variables called x in our last

example session.

– The module variable x comes into existence before the temporary variable x

and survives the call of function f.

– During the call of f, storage exists for both variables, so their values remain

distinct.

• Using Keywords for Default and Optional Arguments:

• The programmer can also specify optional arguments with default values in any

function definition.

• Here is the syntax:

def <function name>(<required arguments>, <key-1> = <val-1>, ... <key-n> =

<val-n>)

• The required arguments are listed first in the function header. These are the ones that

are “essential” for the use of the function by any caller.

• Following the required arguments are one or more default arguments or keyword

arguments. These are assignments of values to the argument names. When the function

is called without these arguments, their default values are automatically assigned to

them. When the function is called with these arguments, the default values are

overridden by the caller’s values.

• When using functions that have default arguments, you must provide the required

arguments and place them in the same positions as they are in the function definition’s

header.

• The default arguments that follow can be supplied in two ways:

1. By position. In this case, the values are supplied in the order in which the arguments

occur in the function header. Defaults are used for any arguments that are omitted.

2. By keyword. In this case, one or more values can be supplied in any order, using the

syntax <key> = <value> in the function call.

• Here is an example of a function with one required argument and two default arguments

and a session that shows these options:

>>> def example(required, option1 = 2, option2 = 3):

print(required, option1, option2)

>>> example(1) # Use all the defaults

1 2 3

>>> example(1, 10) # Override the first default

1 10 3

>>> example(1, 10, 20) # Override all the defaults

1 10 20

>>> example(1, option2 = 20) # Override the second default

1 2 20

>>> example(1, option2 = 20, option1 = 10) # In any order

1 10 20

6. Anonomyous Function or Lambda function:

• An anonymous function is a function that is defined without a name.

• While normal functions are defined using the def keyword in Python, anonymous

functions are defined using the lambda keyword.

lambda arguments: expression

Lambda functions can have any number of arguments but only one expression. The

expression is evaluated and returned.

EXAMPLE 1:

>>> d = lambda x: x * 2

>>> print(d(5))

10

• We use lambda functions when we require a nameless function for a short period of

time.

• In Python, we generally use it as an argument to a higher-order function (a function that

takes in other functions as arguments).

• Lambda functions are used along with built-in functions like filter(), map() etc.

EXAMPLE 2 :Lambda with filter():

• The filter() function in Python takes in a function and a list as arguments.

• The function is called with all the items in the list and a new list is returned which

contains items for which the function evaluates to True

>>> my_list = [1, 5, 4, 6, 8, 11, 3, 12]

>>> new_list = list(filter(lambda x: (x%2 == 0) , my_list))

>>> print(new_list)

[4, 6, 8, 12]

EXAMPLE 3: Lambda with map():

• The map() function in Python takes in a function and a list.

• The function is called with all the items in the list and a new list is returned which

contains items returned by that function for each item.

>>> my_list = [1, 5, 4, 6, 8, 11, 3, 12]

>>> new_list=list(map(lambda x:x**2 , my_list))

>>> new_list

[1, 25, 16, 36, 64, 121, 9, 144]

7. Higher Order Functions

• A function is called Higher Order Function if it contains other functions as a

parameter or returns a function as an output i.e, the functions that operate with another

function are known as Higher order Functions

• The 3 mostly used higher order functions are:

– map()

– filter()

– reduce()

https://www.programiz.com/python-programming/function-argument

map() :

• map() function returns a map object(which is an iterator) of the results after applying

the given function to each item of a given iterable (list, tuple etc.)

• Syntax :

map(fun, iter)

• Parameters :

– fun : It is a function to which map passes each element of give iterable.

– iter : It is a iterable which is to be mapped.

Python program to demonstrate working of map.

Return double of n

def addition(n):

return n + n

We double all numbers using map()

numbers = (1, 2, 3, 4)

result = map(addition, numbers)

print(list(result))

Output:

[2, 4, 6, 8]

 filter()

• The filter() method filters the given sequence with the help of a function that tests each

element in the sequence to be true or not.

• Syntax:

filter(function, sequence)

• Parameters:

– function: function that tests if each element of a sequence true or not.

– sequence: sequence which needs to be filtered, it can be sets, lists, tuples, or

containers of any iterators.

• Returns: returns an iterator that is already filtered.

function that filters vowels

def fun(variable):

letters = ['a', 'e', 'i', 'o', 'u']

if (variable in letters):

return True

else:

return False

sequence

sequence = ['g', 'e', 'e', 'j', 'k', 's', 'p', 'r']

using filter function

filtered = filter(fun, sequence)

print('The filtered letters are:')

for s in filtered:

print(s)

OUTPUT :

The filtered letters are: e e

 reduce() :

• The Python functools module includes a reduce function that expects a function of two

arguments and a list of values. The reduce function returns the result of applying the

function as just described.

• The following example shows reduce used twice—once to produce a sum and once to

produce a product:

>>> from functools import reduce

>>> def add(x, y):

return x + y

>>> def multiply(x, y):

return x * y

>>> data = [1, 2, 3, 4]

>>> reduce(add, data)

10

>>> reduce(multiply, data)

24

8. Modules in Python:

 Modules refer to a file containing Python statements and definitions.

 A file containing Python code, for example: example.py, is called a module, and its module

name would be example

 Modules to break down large programs into small manageable and organized files.

Furthermore, modules provide reusability of code.

User defined module :

Let us create a module. Type the following and save it as example.py.

Python Module example

def add(a, b):

"""This program adds two numbers and return the result"""

result = a + b

return result

We use the import keyword to do this. To import our previously defined module example,

we type the following in the Python prompt.

>>> import example

This does not import the names of the functions defined in example directly in the current

symbol table. It only imports the module name example there.

Using the module name we can access the function using the dot . operator. For example:

>>> example.add(4,5.5)

9.5

 Modules are imported by using import statement

Syntax:

i) import module_name

Example:

>>>import math

>>>print(math.sqrt(25))

5.0

ii) from….import statement:

A module may contain definition of many functions and variables.

When you import a module, you can use any variable or any function defined in that module

but if we want to use only selective variables and functions then we will use the

“from……import statement”

Syntax:

from module_name import function_name/variable_name

e.g.1

>>>from time import asctime

print(asctime())

Thu Aug 26 15:08:52 2021

e.g.2

>>>from math import pi

>>>print("pi= ", pi)

To import more than one item from the module, we use a comma separated list like below

from math import sqrt, pow

print(sqrt(25), pow(10,2))

iii) "as keyword":

To avoid the confusion in function names we use as keyword to give a alias name

e.g.

>>>from math import sqrt as square_root

>>>print(square_root(25))

Creating a module: num.py

def square(x):

return(x*x)

def cube(x):

return(x*x*x)

def power(x, y):

return(x**y)

Example program:

import num

print(“Square of 10”,num.square(10))

print(“Cube of 10”,num.cube(10))

print(“Power of 10, 2 is “,num.power(10,5))

9. Packages in Python:

Similar files are kept in the same directory, for example, we may keep all the songs in the

"music" directory. Analogous to this, Python has packages for directories and modules for files.

A package can contain one or more relevant modules. Physically, a package is actually a folder

containing one or more module files

Creating a Package:

Let's create a package named mypackage, using the following steps:

 Create a new folder named C:\MyApp.

 Inside MyApp, create a subfolder with the name 'mypackage'.

 Create an empty init .py file in the mypackage folder.

 Using a Python-aware editor like IDLE, create modules greet.py and functions.py with

the following code:

greet.py

def SayHello(name):

print("Hello ", name)

functions.py

def sum(x,y):

return x+y

def average(x,y):

return (x+y)/2

def power(x,y):

return x**y

 init .py :

The package folder contains a special file called init .py, which stores the package's

content. It serves two purposes:

• The Python interpreter recognizes a folder as the package if it contains

 init .py file.

• init .py exposes specified resources from its modules to be imported.

An empty init .py file makes all functions from the above modules available when

this package is imported. Note that init .py is essential for the folder to be

recognized by Python as a package.

• Import the functions module from the mypackage package and call its power()

function.

>>> from mypackage import functions

>>> functions.power(3,2)

9

• It is also possible to import specific functions from a module in the package.

>>> from mypackage.functions import sum

>>> sum(10,20)

30

>>> average(10,12)

Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>

NameError: name 'average' is not defined

UNIT-4

Syllabus:
File Operations: Understanding read functions, read (), readline () and readlines (), Understanding write

functions, write () and writelines (), Manipulating file pointer using seek, Programming using file

operations, Reading config files in python, Writing log files in python.

Object Oriented Programming: Concept of class, object and instances, Constructor, class attributes and

destructors, Real time use of class in live projects, Inheritance, overlapping and overloading operators,

Adding and retrieving dynamic attributes of classes, Programming using Oops support.

Design with Classes: Objects and Classes, Data modelling Examples, Case Study An ATM, Structuring

Classes with Inheritance and Polymorphism.

Files in Python:

Until now, you have been reading and writing to the standard input and output. Now, we

will see how to use actual data files. Python provides us with an important feature for reading

data from the file and writing data into a file. Mostly, in programming languages, all the values

or data are stored in some variables which are volatile in nature. Because data will be stored into

those variables during run-time only and will be lost once the program execution is completed.

Hence it is better to save these data permanently using files. Python provides basic functions

and methods necessary to manipulate files by default. You can do most of the file manipulation

using a file object.

Opening and Closing Files

The open () Method

Before you can read or write a file, you have to open it using Python's built-in open ()

function. This function creates a file object, which would be utilized to call other support

methods associated with it.

Syntax: file object = open (filename, access mode)

Here are parameter details –

file_name − The file_name argument is a string value that contains the name of the file that you

want to access.

access_mode − The access_mode determines the mode in which the file has to be opened, i.e.,

read, write, append, etc. A complete list of possible values is given below in the table. This is

optional parameter and the default file access mode is read (r).

Here is a list of the different modes of opening a file –

Sno Modes & Description

1 r

Opens a file for reading only. The file pointer is placed at the beginning of the file.

This is the default mode.

2 rb

Opens a file for reading only in binary format. The file pointer is placed at the

beginning of the file. This is the default mode.

3 r+

Opens a file for both reading and writing. The file pointer placed at the beginning of

the file.

4 rb+

Opens a file for both reading and writing in binary format. The file pointer placed at

the beginning of the file.

5 w

Opens a file for writing only. Overwrites the file if the file exists. If the file does not

exist, creates a new file for writing.

6 wb

Opens a file for writing only in binary format. Overwrites the file if the file exists.

If the file does not exist, creates a new file for writing.

7 w+

Opens a file for both writing and reading. Overwrites the existing file if the file

exists. If the file does not exist, creates a new file for reading and writing.

8 wb+

Opens a file for both writing and reading in binary format. Overwrites the existing

file if the file exists. If the file does not exist, creates a new file for reading and

writing.

9 a

Opens a file for appending. The file pointer is at the end of the file if the file exists.

That is, the file is in the append mode. If the file does not exist, it creates a new file

for writing.

10 ab

Opens a file for appending in binary format. The file pointer is at the end of the file

if the file exists. That is, the file is in the append mode. If the file does not exist, it

creates a new file for writing.

11 a+

Opens a file for both appending and reading. The file pointer is at the end of the

file if the file exists. The file opens in the append mode. If the file does not exist,

it creates a new file for reading and writing.

12 ab+

Opens a file for both appending and reading in binary format. The file pointer is at

the end of the file if the file exists. The file opens in the append mode. If the file

does not exist, it creates a new file for reading and writing.

The file Object Attributes:

Once a file is opened and you have one file object, you can get various information

related to that file.

Here is a list of all attributes related to file object −

Sno Attribute & Description

1 file.closed

Returns true if file is closed, false otherwise.

2 file.mode

Returns access mode with which file was opened.

3 file.name

Returns name of the file.

Example:

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#File object attributes

print('Name of the file: ', f.name)

print('Closed or not : ', f.closed)

print('Opening mode : ', f.mode)

f.close()

The close () Method

The close () method of a file object flushes any unwritten information and closes the

file object, after which no more writing can be done. It is a good practice to use the close ()

method to close a file.

Syntax: fileObject.close()

Example:

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#File object attributes

print('Name of the file: ', f.name)

print('Closed or not : ', f.closed)

print('Opening mode : ', f.mode)

f.close()

Reading and Writing Files

The file object provides a set of access methods. Now, we will see how to use read (), readline

(), readlines () and write (), writelines () methods to read and write files.

Understanding write () and writelines ()

The write () Method

• The write () method writes any string (binary data and text data) to an open file.

• The write () method does not add a newline character ('\n') to the end of the string

Syntax: fileObject.write(string)

Here, passed parameter is the content to be written into the opened file.

Example:

f=open('sample.txt','w') #creates a new file sample.txt give write permissions on file

#writing content into file sample.txt using write method

f.write("Python is a great language.")

f.close()

The writelines () method:

Python file method writelines () writes a sequence of strings to the file. The sequence

can be any iterable object producing strings, typically a list of strings. There is no return value

.

Syntax: fileObject.writelines(sequence)

Parameters

Sequence − This is the Sequence of the strings.

Return Value-This method does not return any value.

Example

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#writing content into file using write method

f.writelines (['python is easy\n','python is portable\n','python is comfortable']

)

f.close()

Understanding read (), readline () and readlines ():

The read () Method

The read () method reads a string from an open file. It is important to note that Python strings

can have binary data. apart from text data.

Syntax: fileObject.read([count])

Here, passed parameter is the number of bytes to be read from the opened file. This method

starts reading from the beginning of the file and if count is missing, then it tries to read as

much as possible, maybe until the end of file.

Example

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#writing content into file using write method

f.writelines(['python is easy\n','python is portable\n','python is comfortable'])

f.close()

f=open('sample.txt','r')

#reading first 20 bytes from the file using read() method

print(f.read(20))

The readline () Method

Python file method readline()reads one entire line from the file. A trailing newline character

is kept in the string. If the size argument is present and non-negative, it is a maximum byte

count including the trailing newline and an incomplete line may be returned.

An empty string is returned only when EOF is encountered immediately.

Syntax: fileObject.readline(size)

Parameters

• size − This is the number of bytes to be read from the file.

Return Value

• This method returns the line read from the file.

Example

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#writing content into file using write method

f.writelines(['python is easy\n','python is portable\n','python is comfortable'])

f.close()

f=open('sample.txt','r')

#reading first line of the file using readline() method

print(f.readline())

The readlines () Method

Python file method readlines() reads until EOF using readline() and returns a list

containing the lines. If the optional sizehint argument is present, instead of reading up to EOF,

whole lines totalling approximately sizehint bytes (possibly after rounding up to an internal

buffer size) are read.

An empty string is returned only when EOF is encountered immediately.

Syntax: fileObject.readlines(sizehint)

Parameters

• sizehint − This is the number of bytes to be read from the file.

Return Value

This method returns a list containing the lines.

Example

f=open('sample.txt','w') # creates a new file sample.txt give write permissions on file

#writing content into file using write method

f.writelines(['python is easy\n','python is portable\n','python is comfortable'])

f.close()

f=open('sample.txt','r')

#reading all the line of the file using readlines() method

print(f.readlines())

Manipulating file pointer using seek():

tell (): The tell () method tells you the current position within the file

Syntax: file_object.tell()

Example:

Open a file

fo = open("sample.txt", "r+")

str = fo.read(10)

print("Read String is : ", str)

Check current position

position = fo.tell()

print("Current file position : ", position)

fo.close()

seek (): The seek (offset, from_what) method changes the current file position.

Syntax: f.seek(offset, from_what) #where f is file pointer

Parameters:

Offset: Number of postions to move forward

from_what: It defines point of reference.

Returns: Does not return any value

The reference point is selected by the from_what argument. It accepts three values:

0: sets the reference point at the beginning of the file

1: sets the reference point at the current file position

2: sets the reference point at the end of the file

By default from_what argument is set to 0.

Note: Reference point at current position / end of file cannot be set in text mode except

when offset is equal to 0.

Example:

Open a file

fo = open("sample.txt", "r+")

str = fo.read(10)

print("Read String is : ", str)

Check current position

position = fo.tell()

print("Current file position : ", position)

Reposition pointer at the beginning once again

position = fo.seek(0, 0);

str = fo.read(10)

print("Again read String is : ", str)

Close opend file

fo.close()

File processing operations:

Python os module provides methods that help you perform file-processing operations,

such as renaming and deleting files.

To use this module you need to import it first and then you can call any related functions.

i) os.rename(): The rename() method takes two arguments, the current filename and the new

filename.(to rename file)

Syntax: os.rename(current_file_name, new_file_name)

Example:

import os

os.rename(‘sample.txt’,’same.txt’)

ii) os.mkdir(): The mkdir() method takes one argument as directory name, that you want to

create.(This method is used to create directory)

Syntax: os.mkdir(directory name)

Example:

import os

os.mkdir(‘python’) # Creates python named directory

iii) os.rmdir(): The rmdir() method takes one argument as directory name, that you want to

remove.(This method is used to remove directory)

Syntax: os.rmdir(directory name)

Example:

import os

os.rmdir(‘python’) # removes python named directory

iv) os.chdir(): The chdir() method takes one argument as directory name which we want to

change.(This method is used to change directory)

Syntax: os.chdir(newdir)

Example:

import os

os.chdir(‘D:\>’) # change directory to D drive

os.remove(): The remove() method takes one argument, the filename that you want to

remove.(This method is used to remove file)

Syntax: os.remove(filename)

Example:

import os

os.remove(‘python,txt’) # removes python.txt named file

os.getcwd(): The getcwd() method takes zero arguments,it gives current working director.

Syntax: os.getcwd()

Example:

import os

os.getcwd() # it gives current working directory

WRITING AND READING CONFIG FILES IN PYTHON

Config files help creating the initial settings for any project, they help avoiding the

hardcoded data. For example, imagine if you migrate your server to a new host and suddenly

your application stops working, now you have to go through your code and search/replace IP

address of host at all the places. Config file comes to the rescue in such situation. You define

the IP address key in config file and use it throughout your code. Later when you want to change

any attribute, just change it in the config file. So this is the use of config file.

Creating and writing config file in Python

In Python we have configparser module which can help us with creation of config files (.ini
format).

Program:

from configparser import ConfigParser

#Get the configparser object

config_object = ConfigParser()

#Assume we need 2 sections in the config file, let's call them USERINFO and
SERVERCONFIG

config_object["USERINFO"] = {

"admin": "Chankey Pathak",

"loginid": "chankeypathak",

"password": "tutswiki"

}

config_object["SERVERCONFIG"] = {

"host": "tutswiki.com",

"port": "8080",

"ipaddr": "8.8.8.8"

}

#Write the above sections to config.ini file

with open('config.ini', 'w') as conf:

config_object.write(conf)

Now if you check the working directory, you will notice config.ini file has been created, below

is its content.

[USERINFO]

admin = Chankey Pathak

password = tutswiki

loginid = chankeypathak

[SERVERCONFIG]

host = tutswiki.com

ipaddr = 8.8.8.8

port = 8080

Reading a key from config file:

So we have created a config file, now in your code you have to read the configuration

data so that you can use it by “keyname” to avoid hardcoded data, let’s see how to do that

Program:

from configparser import ConfigParser

#Read config.ini file

config_object = ConfigParser()

config_object.read("config.ini")

#Get the password

userinfo = config_object["USERINFO"]

print("Password is{}".format(userinfo["password"]))

output:

Password is tutswiki

UNIT-4

PART-2

Object Oriented Programming: Concept of class, object and instances, Constructor, class

attributes and destructors, Real time use of class in live projects, Inheritance, overlapping and

overloading operators, Adding and retrieving dynamic attributes of classes, Programming using

Oops support

Design with Classes: Objects and Classes, Data modelling Examples, Case Study An ATM,

Structuring Classes with Inheritance and Polymorphism

Introduction

We have two programming techniques namely

1. Procedural-oriented programming technique

2. Object-oriented programming technique

Till now we have using the Procedural-oriented programming technique, in which our

program is written using functions and block of statements which manipulate data. However a

better style of programming is Object-oriented programming technique in which data and

functions are combined to form a class. Object Oriented programming (OOP) is a programming

paradigm that relies on the concept of classes and objects. It is used to structure a software

program into simple, reusable pieces of code blueprints (usually called classes), which are used

to create individual instances of objects. There are many object-oriented programming

languages including JavaScript, C++, Java, and Python.

Classes and objects are the main aspects of object oriented programming.

Overview of OOP Terminology

• Class − A user-defined prototype for an object that defines a set of attributes that

characterize any object of the class. The attributes are data members (class variables

and instance variables) and methods, accessed via dot notation.

• Class variable − A variable that is shared by all instances of a class. Class variables are

defined within a class but outside any of the class's methods. Class variables are not

used as frequently as instance variables are.

• Data member − A class variable or instance variable that holds data associated with a

class and its objects.

• Function overloading − The assignment of more than one behavior to a particular

function. The operation performed varies by the types of objects or arguments

involved.

• Instance variable − A variable that is defined inside a method and belongs only to the

current instance of a class.

• Inheritance − The transfer of the characteristics of a class to other classes that are

derived from it.

• Instance − An individual object of a certain class. An object obj that belongs to a class

Circle, for example, is an instance of the class Circle.

• Instantiation − The creation of an instance of a class.

• Method − A special kind of function that is defined in a class definition.

• Object − A unique instance of a data structure that's defined by its class. An object

comprises both data members (class variables and instance variables) and methods.

• Operator overloading − The assignment of more than one function to a particular

operator.

Benefits of OOP

 OOP models complex things as reproducible, simple structures

 Reusable, OOP objects can be used across programs

 Allows for class-specific behavior through polymorphism

 Easier to debug, classes often contain all applicable information to them

 Secure, protects information through encapsulation

Classes:

1. Class is a basic building block in python

2. Class is a blue print or template of a object

3. A class creates a new data type

4. And object is instance(variable) of the class

5. In python everything is an object or instance of some class

Example :

All integer variables that we define in our program are instances of class int. >>>

a=10

>>> type(a)

<class 'int'>

6. The python standard library based on the concept of classes and objects

Defining a class:

Python has a very simple syntax of defining a class.

Syntax :

Class class-name:

Statement1

Statement2

Statement3

-

-

-

Statement

From the syntax, Class definition starts with the keyword class followed by class-name

and a colon(:). The statements inside a class are any of these following

1. Sequential instructions

2. Variable definitions

3. Decision control statements

4. Loop statements

5. Function definitions

Note : the class members are accessed through class object

Note : class methods have access to all data contained in the instance of the object

Creating objects: (creating an object of a class is known as class

instantiation)

• Once a class is defined, the next job is to create a object of that class. • The

object can then access class variables and class methods using dot operator

Syntax of object creation:

Object-name=class-name()

• Syntax for accessing class members through the class object is

Object-name.class-member-name

Example :

class ABC:

a=10

obj=ABC()

print(obj.a)

self variable and class methods:

• Self refers to the object itself (Self is a pointer to the class instance)

• Whenever we define a member function in a class always use a self as a first argument

and give rest of the arguments

• Even if it doesn’t take any parameter or argument you must pass self to a member

function

• We do not give a value for this parameter, when call the method, python will provide it.

• The self in python is equivalent to the this pointer in c++

Example 1 :

class Person:

pc=0 # Class varibles

def setFullName(self,fName,lName):

self.fName=fName # instance variables

self.lName=lName # instance variables

def printFullName(self):

print(self.fName," ",self.lName)

print("Person number : ",self.pc) #access Classvariable

PName=Person() #Object PName created

PName.setFullName("vamsi","kurama")

PName.pc=7 #Attribute pc of PName modified

PName.printFullName()

P=Person() #Object P created

P.setFullName("Surya","Vinti")

P.pc=23 #Attribute pc of P modified

P.printFullName()

Output:

>>>

vamsi kurama

Person number : 7

Surya Vinti

Person number : 23

Constructor method:

A constructor is a special type of method (function) that is called when it instantiates an object

of a class. The constructors are normally used to initialize (assign values) to the instance

variables.

Creating a constructor: (The name of the constructor is always the _ _init_ _().)

The constructor is always written as a function called init (). It must always take as its

first argument a reference to the instance being constructed.

While creating an object, a constructor can accept arguments if necessary. When you create a

class without a constructor, Python automatically creates a default constructor that doesn't do

anything.

Every class must have a constructor, even if it simply relies on the default

constructor. Example:

class Person:

pc=0 # Class varibles

def init (self):

print("Constructor initialised ")

self.fName="XXXX"

self.lName="YYYY"

def setFullName(self,fName,lName):

self.fName=fName # instance variables

self.lName=lName # instance variables

def printFullName(self):

print(self.fName," ",self.lName)

print("Person number : ",self.pc) #access Classvariable

PName=Person()

PName.printFullName()

PName.setFullName("vamsi","kurama")

PName.pc=7

print("After setting Name:")

PName.printFullName()

Output:

>>>

Constructor initialised

XXXX YYYY

Person number : 0

After setting Name:

vamsi kurama

Person number : 7

Destructor:

Destructors are called when an object gets destroyed. In Python, destructors are not

needed as much needed in C++ because Python has a garbage collector that handles memory

management automatically. The _ _ del _ _ () method is a known as a destructor method in

Python. It is called when all references to the object have been deleted i.e when an object is

garbage collected.

Syntax of destructor declaration:

def del (self):

body of destructor

Note: A reference to objects is also deleted when the object goes out of reference or when
the program ends.

Example 1: Here is the simple example of destructor. By using del keyword we deleted the
all references of object ‘obj’, therefore destructor invoked automatically.

Python program to illustrate destructor

class Employee:

Initializing

def init (self):

print('Employee created.')

Deleting (Calling destructor)

def del (self):

print('Destructor called, Employee deleted.')

obj = Employee()

del obj

Output:

Employee created

Destructor called, Employee deleted

Inheritance:

One of the major advantages of Object Oriented Programming is reusability.

Inheritance is one of the mechanisms to achieve the reusability. Inheritance is used to

implement is-a relationship.

Definition: A technique of creating a new class from an existing class is called inheritance. The

old or existing class is called base class or super class and a new class is called sub class or

derived class or child class.

The derived class inherits all the variable and methods of the base class and adds their

own variables and methods. In this process of inheritance base class remains unchanged.

Syntax to inherit a class:

Class MySubClass(object):

Pass(Body-of-the-derived-class)

Example :

class Pet:

def init (self,name,age):

self.name=name

self.age=age

class Dog(Pet):
def sound(self):

print("I am {} and My age is {} and I sounds
Like".format(self.name,self.age)) print("Bow Bow..")

class Cat(Pet):
def sound(self):

print("I am {} and My age is {} and I sounds
Like".format(self.name,self.age)) print("Meow Meow..")

class Parrot(Pet):

def sound(self):

print("Hello I am {} and My age is {} ".format(self.name,self.age))

p1=Dog("Dozer",4)

p2=Cat("Edward",3)

p3=Parrot("Jango",6)

p1.sound()

p2.sound()

p3.sound()

Example 2:

class Person:

def init (self,name,age):

self.name=name

self.age=age

def display(self):

print("name=",self.name)

print("age=",self.age)

class Teacher(Person):

def init (self,name,age,exp,r_area):

Person. init (self,name,age)

self.exp=exp

self.r_area=r_area

def displayData(self):

Person.display(self)

print("Experience=",self.exp)

print("Research area=",self.r_area)

class Student(Person):
def init (self,name,age,course,marks):

Person. init (self,name,age)

self.course=course

self.marks=marks

def displayData(self):

Person.display(self)

print("course=",self.course)

print("marks=",self.marks)

print("********TEACHER***********")

t=Teacher("jai",55,13,"cloud computing")

t.displayData()

print("********STUDENT***********")

s=Student("hari",21,"B.Tech",99)

s.displayData()

Types of inheritance:

Python supports the following types of inheritan:

i) Single inheritance

ii) Multiple Inheritance

iii) Multi-level Inheritance

iv) Multi path Inheritance

Single Inheritance:

When a derived class inherits features form only one base class, it is called Single

inheritance.

Syntax:

class Baseclass:

<body of base class>

class Derivedclass(Baseclass):

<body of the derived class>

Example:

class A:

i=10

class B(A):

j=20

obj=B()

print("member of class A is",obj.i)

print("member of class B is",obj.j)

Multiple Inheritance:

When derived class inherits features from more than one base class then it is called Multiple

Inheritance.

Syntax:

class Baseclass1:

<body of base class1>

class Baseclass2:

<body of base class2>

class Derivedclass(Baseclass1,Baseclass2):

<body of the derived class>

e.g.

class A:

i=10

class B:

j=20

class C(A,B):

k=30

obj=C()

print("member of class A is",obj.i)

print("member of class B is",obj.j)

print("member of class C is",obj.k)

Multi-Level Inheritance:

When derived class inherits features from other derived classes then it is called Multi-level

inheritance.

Syntax:

class Baseclass:

<body of base class>

class Derivedclass1(Baseclass):

<body of derived class 1>

class Derivedclass2(Derivedclass1):

<body of the derived class2>

e.g.

class A:

i=10

class B(A):

j=20

class C(B):

k=30

obj=C()

print("member of class A is",obj.i)

print("member of class B is",obj.j)

print("member of class C is",obj.k)

Multi Path Inheritance:

Syntax:

class Baseclass:

<body of the base class>

class Derived1(Baseclass):

<body of the derived1>

class Derived2(Baseclass):

<body of the derived2>

class Derived3 (Derived1,Derived2) :

<body of derived3>

e.g.

class A:

i=10

class B(A):

j=20

class C(A):

k=30

class D(B,C):

ijk=40

obj=D()
print("member of class A is",obj.i)
print("member of class B is",obj.j)
print("member of class C is",obj.k)
print("member of class Cis",obj.ijk)

Polymorphism:

The word polymorphism means having many forms. In python we can find the same operator

or function taking multiple forms. That helps in re using a lot of code and decreases code

complexity.

Polymorphism in operators

• The + operator can take two inputs and give us the result depending on what the inputs

are.

• In the below examples we can see how the integer inputs yield an integer and if one of the

input is float then the result becomes a float. Also for strings, they simply get

concatenated.

Example:

a = 23

b = 11

c = 9.5

s1 = "Hello"

s2 = "There!"

print(a + b)

print(type(a + b))

print(b + c)

print(type (b + c))

print(s1 + s2)

print(type(s1 + s2))

Polymorphism in built-in functions

We can also see that different python functions can take inputs of different types and then

process them differently. When we supply a string value to len() it counts every letter in it. But

if we give tuple or a dictionary as an input, it processes them differently.

Example:

str = 'Hi There !'

tup = ('Mon','Tue','wed','Thu','Fri')

lst = ['Jan','Feb','Mar','Apr']

dict = {'1D':'Line','2D':'Triangle','3D':'Sphere'}

print(len(str))

print(len(tup))

print(len(lst))

print(len(dict))

Polymorphism in inheritance:

Method Overriding:

It is nothing but same method name in parent and child class with different functionalities. In

inheritance only we can achieve method overriding. If super and sub classes have the same

method name and if we call the overridden method then the method of corresponding class

(by using which object we are calling the method) will be executed.

e.g.

class A:

i=10

def display(self):

print("I am class A and I have data",self.i)

class B(A):

j=20

def display(self):

print("I am class B and I have data",self.j)

obj=B()

obj.display()

OUTPUT :

I am class B and I have data 20

Note: In above program the method of class B will execute. If we want to execute method of

class A by using Class B object we use super() concept.

Super():

In method overriding , If we want to access super class member by using sub class object we

use super()

e.g

class A:

i=10

def display(self):

print("I am class A and I hava data",self.i)

class B(A):

j=20

def display(self):

super().display()

print("I am class B and I hava data",self.j)

obj=B()

obj.display()

OUTPUT:

I am class A and I have data 10

I am class B and I have data 20

Note: In above example both the functions (display () in class A and display () in class B)

will execute

Note: Name mangling is the encoding of function and variable names into unique names so

that linkers can separate common names in the language.

overloading operators

Operator Overloading means giving extended meaning beyond their predefined

operational meaning. For example, operator + is used to add two integers as well as join two

strings and merge two lists. It is achievable because ‘+’ operator is overloaded by int class and

str class. You might have noticed that the same built-in operator or function shows different

behavior for objects of different classes, this is called Operator Overloading.

Python program to show use of + and * operator for different purposes.

print(1 + 2)

concatenate two strings

print("Learn"+"For")

Product two numbers

print(3 * 4)

Repeat the String

print("Learn"*4)

Output:

3

LearnFor

12

LearnLearnLearnLearn

Example 2:

Changing the behavior of operator is as simple as changing the behavior of method or

function. You define methods in your class and operators work according to that behavior defined

in methods. When we use + operator, the magic method add is automatically invoked in

which the operation for + operator is defined.

class A:

def init (self, a):

self.a = a

def add (self, o): # adding two objects

return self.a + o.a

ob1 = A(1)

ob2 = A(2)

ob3 = A("sai")

ob4 = A("kumar")

ob5=A([2,5,6,2])

ob6=A([34.6,12])

print(ob1 + ob2)

print(ob3 + ob4)

print(ob5 + ob6)

OUTPUT:

>>>

3

saikumar

[2, 5, 6, 2, 34.6, 12]

Case Study An ATM:

class ATM:

def init (self):

self.balance=0

print("new account created")

def deposit(self):

amount=int(input("enter amount to deposit"))

self.balance=self.balance+amount

Ob1.a=1

Ob2.a=2

Ob3.a=”sai”

Ob4.a=”kumar”

Ob5.a=[2,5,6,2]

Ob6.a=[34.6,12]

print("new balance is:",self.balance)

def withdraw(self):

amount=int(input("enter amount to withdraw"))

if self.balance<amount:

print("Insufficient Balance")

else:

def enquiry(self):

self.balance=self.balance-amount

print("new balance is:",self.balance)

print("Balance is:",self.balance)

a=ATM()

a.deposit()

a.withdraw()

a.enquiry()

OUTPUT:

>>>

new account created

enter amount to deposit15000

new balance is: 15000

enter amount to withdraw5648

new balance is: 9352

Balance is: 9352

Adding and retrieving dynamic attributes of classes:

Dynamic attributes in Python are terminologies for attributes that are defined at runtime, after

creating the objects or instances.

Example:

class EMP:

employee = True

e1 = EMP()

e2 = EMP()

e1.employee = False

e2.name = "SAI KUMAR" #DYNAMIC ATTRIBUTE

print(e1.employee)

print(e2.employee)

print(e2.name)

print(e1.name) # this will raise an error as name is a dynamic attribute created only for

#the e2 object

UNIT 5 PART -1

EXCEPTION HANDLING

Errors and Exceptions:The programs that we write may behave abnormally or unexpectedly

because of some errors and/or exceptions.

Errors:

• The two common types of errors that we very often encounter are syntax errors and logic

errors.

Syntax errors: And syntax errors, arises due to poor understanding of the language. Syntax

errors occur when we violate the rules of Python and they are the most common kind of

error that we get while learning a new language.

Example :

i=1

while i<=10

print(i)

i=i+1

if you run this program we will get syntax error like below,

File "1.py", line 2

while i<=10

^

SyntaxError: invalid syntax

Logical errors: While logic errors occur due to poor understanding of problem and its

solution. Logic error specifies all those type of errors in which the program executes but

gives incorrect results. Logical error may occur due to wrong algorithm or logic to solve

a particular program.

• However, such errors can be detected at the time of testing.

Exceptions:

• Even if a statement is syntactically correct, it may still cause an error when executed. • Such

errors that occur at run-time (or during execution) are known as exceptions. • An exception

is an event, which occurs during the execution of a program and disrupts the normal flow of

the program's instructions.

• Exceptions are run-time anomalies or unusual conditions (such as divide by zero, accessing

arrays out of its bounds, running out of memory or disk space, overflow, and underflow)

that a program may encounter during execution.

• Like errors, exceptions can also be categorized as synchronous and asynchronous

exceptions.

• While synchronous exceptions (like divide by zero, array index out of bound, etc.) can be

controlled by the program

• Asynchronous exceptions (like an interrupt from the keyboard, hardware malfunction, or

disk failure), on the other hand, are caused by events that are beyond the control of the

program.

• When an exception occurs in a program, the program must raise the exception. After that

it must handle the exception or the program will be immediately terminated. • if exceptions

are not handled by programs, then error messages are generated..

Example:

num=int(input("enter numerator"))

den=int(input("enter denominator"))

quo=num/den

print(quo)

output:

C:\Users\PP>python excep.py

enter numerator1

enter denominator0

Traceback (most recent call last):

File "excep.py", line 3, in <module>

quo=num/den

ZeroDivisionError: division by zero

Handling Exceptions:

We can handle exceptions in our program by using try block and except block. A critical

operation which can raise exception is placed inside the try block and the code that handles

exception is written in except block.

The syntax for try–except block can be given as

try:

statements

except ExceptionName:

statements

Example:

num=int(input(“Numerator: ”))

deno=int(input(“Denominator: “))

try:

quo=num/deno

print(“QUOTIENT: “,quo)

except ZeroDivisionError:

print(“Denominator can’t be zero”)

Output:

Numerator: 10

Denominator: 0

Denominator can’t be zero

Multiple except blocks:

Python allows you to have multiple except blocks for a single try block. The block which

matches with the exception generated will get executed.

syntax:

e.g.

string = input("Enter a String:")

try:

num = int(input("Enter a number"))

print(string+num)

except TypeError as e:

print(e)

except ValueError as e:

print(e)

(OR)

string = input("Enter a String:")

try:

You do your operations here;

......................

except(Exception1[, Exception2[,...ExceptionN]]]):

If there is any exception from the given exception list,

then execute this block.

......................

else:

If there is no exception then execute this block.

try:

num = int(input("Enter a number"))

print(string+num)

except (TypeError,ValueError) as e:

print(e)

OUTPUT :

>>>

Enter a String:hai

Enter a number3

Can't convert 'int' object to str implicitly

>>>

Enter a String:hai

Enter a numberbye

invalid literal for int() with base 10: 'bye'

Raising Exceptions:

The raise keyword is used to raise an exception.You can define what kind of error to raise,

and the text to print to the user.

The raise statement allows the programmer to force a specific exception to occur. The sole

argument in raise indicates the exception to be raised. This must be either an exception instance or

an exception class (a class that derives from Exception)

You can Explicitly raise an exception using the raise keyword.

The general syntax for the raise statement is

raise [Exception [, args [, traceback]]]

Here, Exception is the name of exception to be raised. args is optional and specifies a value for

the exception argument. If args is not specified, then the exception argument is None. The final

argument, traceback, is also optional and if present, is the traceback object used for the exception.

num=int(input("enter numerator"))

den=int(input("enter denominator"))

try:

quo=num/den

raise Exception("I want an exception anyway")

print(quo)

except ZeroDivisionError:

print("Denominator cant be zero")

OUTPUT:

>>>

enter numerator4

enter denominator0

Denominator cant be zero

>>>

enter numerator4

enter denominator2

Traceback (most recent call last):

File "C:\Python32\raisex.py", line 5, in <module>

raise Exception("I want an exception anyway")

Exception: I want an exception anyway

Defining clean-up actions(The finally Block)

The finally block is always executed before leaving the try block. This means that the

statements written in finally block are executed irrespective of whether an exception has

occurred or not.

Syntax:

try:
Write your operations here

......................

finally:

e.g.

Due to any exception, operations written here will be skipped

This would always be executed.

......................

num=int(input("enter numerator"))

den=int(input("enter denominator"))

try:

quo=num/den

print(quo)

except ZeroDivisionError:

print("Denominator cant be zero")

else:

print("This line is executed when there is no exception")

finally:

print("TASK DONE")

OUTPUT:

>>>

enter numerator4

enter denominator2

2.0

This line is executed when there is no exception

TASK DONE

>>>

enter numerator4

enter denominator0

Denominator cant be zero

TASK DONE

Built-in and User-defined Exceptions:

Built-in Exceptions:

Exceptions that are already defined in python are called built in or pre-defined

exception. In the table listed some built-in exceptions

EXCEPTION

NAME

DESCRIPTION

Exception Base class for all exceptions

ArithmeticError Base class for all errors that occur for numeric calculation.

OverflowError Raised when a calculation exceeds maximum limit for a numeric type.

FloatingPointError Raised when a floating point calculation fails.

ZeroDivisionErro

r

Raised when division or modulo by zero takes place for all numeric types.

EOFError Raised when there is no input from either the raw_input() or input()

function

and the end of file is reached.

ImportError Raised when an import statement fails.

KeyboardInterrupt Raised when the user interrupts program execution, usually by pressing

Ctrl+c.

IndexError

KeyError

Raised when an index is not found in a sequence.

Raised when the specified key is not found in the dictionary.

NameError Raised when an identifier is not found in the local or global namespace.

IOError Raised when an input/ output operation fails

SyntaxError

IndentationError

Raised when there is an error in Python syntax.

Raised when indentation is not specified properly.

User –defined exception:

Python allows programmers to create their own exceptions by creating a new exception

class. The new exception class is derived from the base class Exception which is predefined in

python.

Example:

class myerror(Exception):

def init (self,val):

self.val=val

try:

raise myerror(10)

except myerror as e:

print(“user defined exception generated with value”,e.val)

OUTPUT:

user defined exception generated with value 10

UNIT 5 PART-II

Graphical User Interface:

Python provides various options for developing graphical user interfaces (GUIs). Most

important are listed below.

• Tkinter

• wxPython

• JPython

Tkinter Programming

Tkinter is the standard GUI library for Python. Python when combined with Tkinter
provides a fast and easy way to create GUI applications. Creating a GUI application using
Tkinter is an easy task. All you need to do is perform the following steps –

• Import the Tkinter module.
• Create the GUI application main window.
• Add one or more of the above-mentioned widgets to the GUI application.
• Enter the main event loop to take action against each event triggered by the user.

Example:

From import Tkinter *

top = Tkinter.Tk()

Code to add widgets will go here...

top.mainloop()

This would create a following window –

Tkinter Widgets:

Tkinter provides various controls, such as buttons, labels and text boxes used in a GUI
application. These controls are commonly called widgets.

There are currently 15 types of widgets in Tkinter. We present these widgets as well as

a brief description in the following table –

 Button

 Canvas

 Check button

 Entry

 Frame

 Label

 List box

 Menu button

 Menu

 Message

 Radio button

 Scale

 Scrollbar

 Text

 Top level.

 Spin box

 Paned Window

 Label Frame

 Tk Message Box

Standard attributes for widgets

• Dimensions

• Colors

• Fonts

• Relief styles

• Bitmaps

• Cursors

Geometry Management:

All Tkinter widgets have access to specific geometry management methods, Tkinter exposes

the following geometry manager classes: pack, grid, and place. •

 The pack() Method - This geometry manager organizes widgets in blocks before

placing them in the parent widget.

 The grid() Method - This geometry manager organizes widgets in a table-like

structure in the parent widget.

 The place() Method -This geometry manager organizes widgets by placing

them in a specific position in the parent widget.

1) Creation of a window/widget

First, we will import Tkinter package and create a window and set its title. The last line which calls

mainloop function, this function calls the endless loop of the window, so the window will wait for

any user interaction till we close it. If you forget to call the mainloop function, nothing will appear

to the user.

Program:

from tkinter import *

window = Tk()

window.title("Welcome to tkinter")

window.mainloop()

2) Creating a window with specific dimensions and a label

To add a label to our previous example, we will create a label using the label class like this:

lbl = Label(window, text="Hello")

Then we will set its position on the form using the grid function and give it the location like this:

lbl.grid(column=0, row=0)

So the complete code will be like this:

Program

from tkinter import *

window = Tk()

window.geometry("500x600")

window.title("CSE")

lbl = Label(window, text="HelloWorld",font=("Arial Bold", 50))

lbl.grid(column=0, row=0)

window.mainloop()

3) Adding a Button to window/widget

Let’s start by adding the button to the window, the button is created and added to the window the

same as the label:

btn = Button(window, text="Click Me")

btn.grid(column=1, row=0)

Program:

from tkinter import *

window = Tk()

window.geometry("300x300")

window.title("CSE")

lbl = Label(window, text="HelloWorld")

lbl.grid(column=0, row=0)

btn = Button(window, text="Click Me")

btn.grid(column=1, row=0)

window.mainloop()

4) Creating 2 text fields to enter 2 numbers, and a button when clicked gives sum of the 2

numbers and displays it in 3rd text field

You can create a textbox using Tkinter Entry class like this:

= Entry(window,width=10)

Then you can add it to the window using grid function as usual

Program:

from tkinter import *

window = Tk()

window.geometry('350x200')

lbl1 = Label(window, text="enter the first value")

lbl1.grid(column=0, row=0)

lbl2 = Label(window, text="enter the second value")

lbl2.grid(column=0, row=1)

txt1 = Entry(window,width=10)

txt1.grid(column=1, row=0)

txt2 = Entry(window,width=10)

txt2.grid(column=1, row=1)

txt3 = Entry(window,width=20)

txt3.grid(column=1, row=2)

def clicked():

res=int(txt1.get())+int(txt2.get())

txt3.insert(0,"Sum is {}".format(res))

btn = Button(window, text="Click Me", command=clicked)

btn.grid(column=2, row=1)

window.mainloop()

5) Creating 2 checkboxes

To create a checkbutton, you can use Checkbutton class like this:

chk = Checkbutton(window, text='Choose')

Here we create a variable of type BooleanVar which is not a standard Python variable, it’s a Tkinter

variable, and then we pass it to the Checkbutton class to set the check state as the highlighted line in

the above example. You can set the Boolean value to false to make it unchecked.

the following program creates a check box.

from tkinter import *

from tkinter.ttk import *

window = Tk()

window.geometry('350x200')

chk_state = BooleanVar()

chk_state.set(True) #set check state

chk1 = Checkbutton(window, text='CSE A', var=chk_state)

chk2 = Checkbutton(window, text='CSE B', var=chk_state)

chk1.grid(column=0, row=0)

chk2.grid(column=0, row=1)

window.mainloop()

6) Creating 3 radio buttons

To add radio buttons, simply you can use RadioButton class like this:

rad1 = Radiobutton(window,text='First', value=1)

Note that you should set the value for every radio button with a different value, otherwise, they

won’t work.

the following program creates a check box

from tkinter import *

from tkinter.ttk import *

window = Tk()

window.geometry('350x200')

rad1 = Radiobutton(window,text='First', value=1)

rad2 = Radiobutton(window,text='Second', value=2)

rad3 = Radiobutton(window,text='Third', value=3)

rad1.grid(column=0, row=0)

rad2.grid(column=1, row=0)

rad3.grid(column=2, row=0)

window.mainloop()

7) Creating a message box on clicking a button

You can show a warning message or error message the same way. The only thing that needs to

be changed is the message function.

You can show a warning message or error message the same way. The only thing that needs to

be changed is the message function

messagebox.showwarning('Message title', 'Message content') #shows warning message

messagebox.showerror('Message title', 'Message content')

from tkinter import *

window = Tk()

window.geometry('350x200')

def clicked():

messagebox.showinfo('Message title ', 'Message content')

messagebox.showerror('Message title ', 'Message content')

messagebox.show('Message title ', 'Message content')

btn = Button(window,text='Click here', command=clicked)

btn.grid(column=0,row=0)

window.mainloop()

8) Creating various message boxes

To show a yes no message box to the user, you can use one of the following messagebox Functions.

 If you click OK or yes or retry, it will return True value, but if you choose no or cancel, it

will return False.

 The only function that returns one of three values is askyesnocancel function, it

returns True or False or None.

from tkinter import messagebox

res = messagebox.askquestion('Message title','Message content')

res = messagebox.askyesno('Message title','Message content')

res = messagebox.askyesnocancel('Message title','Message content')

res = messagebox.askokcancel('Message title','Message content')

res = messagebox.askretrycancel('Message title','Message content')

9) Creating a Spinbox

To create a Spinbox widget, you can use Spinbox class like this:

spin = Spinbox(window, from_=0, to=100)

Here we create a Spinbox widget and we pass the from_ and to parameters to specify the

numbers range for the Spinbox.

from tkinter import *

window = Tk()

window.title("Welcome to tkinter")

spin = Spinbox(window, from_=0, to=100)

spin.grid(column=0,row=0)

window.mainloop()

Introduction to programming concepts of scratch

Programming is core of computer science, it’s worth taking some time to really get to grips with

programming concepts and one of the main tools used in schools to teach these concepts, Scratch.

Programming simply refers to the art of writing instructions (algorithms) to tell a computer what

to do. Scratch is a visual programming language that provides an ideal learning environment for

doing this. Originally developed by America’s Massachusetts Institute of Technology, Scratch is

a simple, visual programming language. Colour coded blocks of code simply snap together. Many

media rich programs can be made using Scratch, including games, animations and interactive

stories. Scratch is almost certainly the most widely used software for teaching programming to

Key Stage 2 and Key Stage 3 (learners from 8 to 14 years).

Scratch is a great tool for developing the programming skills of learners, since it allows all manner

of different programs to be built. In order to help develop the knowledge and understanding that

go with these skills though, it’s important to be familiar with some key programming concepts that

underpin the Scratch programming environment and are applicable to any programming language.

Using screenshots, we will understand the scratch concepts.

Sprites

The most important thing in any Scratch program are the sprites. Sprites are the graphical

objects or characters that perform a function in your program. The default sprite in Scratch is the

cat, which can easily be changed. Sprites by themselves won’t do anything of course, without

coding!

Sequences

In order to make a program in any programming language, you need to think through the

sequence of steps.

Iteration (looping)

Iteration simply refers to the repetition of a series of instructions. This is accomplished in

Scratch using the repeat, repeat until or forever blocks.

Conditional statements

A conditional statement is a set of rules performed if a certain condition is met. In Scratch,

the if and if-else blocks check for a condition.

Variables

A variable stores specific information. The most common variables in computer games for

example, are score and timer.

Lists (arrays)

A list is a tool that can be used to store multiple pieces of information at once.

Event Handling

When key pressed and when sprite clicked are examples of event handling. These blocks

allow the sprite to respond to events triggered by the user or other parts of the program.

Threads

A thread just refers to the flow of a particular sequence of code within a program. A thread

cannot run on its own, but runs within a program. When two threads launch at the same time it is

called parallel execution.

Coordination & Synchronisation

The broadcast and when I receive blocks can coordinate the actions of multiple sprites.

They work by getting sprites to cooperate by exchanging messages with one another. A common

example is when one sprite touches another sprite, which then broadcasts a new level.

Keyboard input

This is a way of interacting with the user. The ask and wait prompts users to type. The

answer block stores the keyboard input.

Boolean logic

Boolean logic is a form of algebra in which all values are reduced to either true or false.

The and, or, not statements are examples of Boolean logic.

User interface design

Interactive user interfaces can be designed in Scratch using clickable sprites to create

buttons.

1) Creation of a window/widget

from tkinter import *

window = Tk()

window.title("Welcome to tkinter")

window.mainloop()

2) Creating a window with specific dimensions and a label

from tkinter import *

window = Tk()

window.geometry("500x600")

window.title("CSE")

lbl = Label(window, text="HelloWorld",font=("Arial Bold", 50))

lbl.grid(column=0, row=0)

window.mainloop()

3) Adding a Button to window/widget

from tkinter import *

window = Tk()

window.geometry("300x300")

window.title("CSE")

lbl = Label(window, text="HelloWorld")

lbl.grid(column=0, row=0)

btn = Button(window, text="Click Me")

btn.grid(column=1, row=0)

window.mainloop()

4) Creating 2 text fields to enter 2 numbers, and a button when clicked gives sum of the 2

numbers and displays it in 3
rd

 text field

from tkinter import *

window = Tk()

window.geometry('350x200')

lbl1 = Label(window, text="enter the first value")

lbl1.grid(column=0, row=0)

lbl2 = Label(window, text="enter the second value")

lbl2.grid(column=0, row=1)

txt1 = Entry(window,width=10)

txt1.grid(column=1, row=0)

txt2 = Entry(window,width=10)

txt2.grid(column=1, row=1)

txt3 = Entry(window,width=20)

txt3.grid(column=1, row=2)

def clicked():

res=int(txt1.get())+int(txt2.get())

txt3.insert(0,"Sum is {}".format(res))

btn = Button(window, text="Click Me", command=clicked)

btn.grid(column=2, row=1)

window.mainloop()

5) Creating 2 checkboxes

from tkinter import *

from tkinter.ttk import *

window = Tk()

window.geometry('350x200')

chk_state = BooleanVar()

chk_state.set(True) #set check state

chk1 = Checkbutton(window, text='CSE A', var=chk_state)

chk2 = Checkbutton(window, text='CSE B', var=chk_state)

chk1.grid(column=0, row=0)

chk2.grid(column=0, row=1)

window.mainloop()

6) Creating 3 radio buttons

from tkinter import *

from tkinter.ttk import *

window = Tk()

window.geometry('350x200')

rad1 = Radiobutton(window,text='First', value=1)

rad2 = Radiobutton(window,text='Second', value=2)

rad3 = Radiobutton(window,text='Third', value=3)

rad1.grid(column=0, row=0)

rad2.grid(column=1, row=0)

rad3.grid(column=2, row=0)

window.mainloop()

7) Creating a message box on clicking a button

from tkinter import *

window = Tk()

window.geometry('350x200')

def clicked():

messagebox.showinfo('Message title ', 'Message content')

messagebox.showerror('Message title ', 'Message content')

messagebox.show('Message title ', 'Message content')

btn = Button(window,text='Click here', command=clicked)

btn.grid(column=0,row=0)

window.mainloop()

8) Creating various message boxes

from tkinter import messagebox

res = messagebox.askquestion('Message title','Message content')

res = messagebox.askyesno('Message title','Message content')

res = messagebox.askyesnocancel('Message title','Message content')

res = messagebox.askokcancel('Message title','Message content')

res = messagebox.askretrycancel('Message title','Message content')

9) Creating a Spinbox

from tkinter import *

window = Tk()

window.title("Welcome to tkinter")

spin = Spinbox(window, from_=0, to=100)

spin.grid(column=0,row=0)

window.mainloop()

|''|'||||''|'''|||'|

Code No: R201225

I B. Tech II Semester Regular Examinations, September- 2021

PYTHON PROGRAMMING
(Com. To CSE, IT, CSE-AI&ML,CSE-AI, CSE-DS, CSE-AI&DS, AI&DS)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit

 All Questions Carry Equal Marks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

UNIT-I 

1 a) Summarize the precedence of mathematical operators in Python. (7M) 

b) Illustrate various conditional statements used in Python programming. (7M) 

Or 

2 a) Write a Python program to demonstrate explicit type conversion. (7M) 

b) Demonstrate the use of break and continue keywords in looping structure using a code

snippet.

(7M) 

UNIT-II 

3 a) Write a program to compute only even numbers sum within the given natural number

using a continue statement.

(7M) 

b) Is String a mutable data type? Also explain the string operations length and slicing in

detail with an appropriate example

(7M) 

Or 

4 a) Compare and contrast for loop and while loop. (7M) 

b) Write a Python program to check whether a given number is Armstrong number or not. (7M) 

UNIT-III 

5 a) Does mutability support for list, if yes explain any two methods with example? (7M) 

b) Write a program to read one subject mark and print pass or fail Use single return values

function with argument.

(7M) 

Or 

6 a) Write a brief note on PIP. Explain installing packages via PIP. (7M) 

b) Write a Python program to read a word and print the number of letters, vowels

and percentage of vowels in the word using a dictionary.

(7M) 

UNIT-IV 

7 a) Create a class Employee with data members name, department and salary. Create suitable

methods for reading and printing employee information.

(7M) 

b) How to implement method overriding in Python? Explain. (7M) 

Or 

8 a) Write a Python program that reads a text file and changes the file by capitalizing each

character of file.

(7M) 

b) Illustrate the concept of pure function with Python code. (7M) 

UNIT-V 

9 a) What s the difference between else block and finally block in exception

handling? Explain with an example program.

(7M) 

b) How to create two radio button sets (one for gender and another for Indian or not) on the

same canvas? Illustrate.

(7M) 

Or

10 Illustrate the use of the four main elements of scratch- Programming palette, storage

area, Sprites and Script.

(14M) 

SET - 1 R20

1 of 1 


	HUMANITIES & BASIC SCIENCES DEPARTMENT
	RAMCHANDRAPURAM
	Faculty Member Head of the Department Principal
	PYTHON
	What is Python?
	What can Python do?
	Why Python?
	Good to know
	Python Syntax compared to other programming languages
	Example

	Python Install
	Python Quickstart
	The Python Command Line
	Python Syntax
	Execute Python Syntax
	Python Indentation
	Example
	Example (1)
	Example (2)
	Example (3)

	Python Variables
	Example

	Comments
	Example


	Python Comments
	Creating a Comment
	Example
	Example (1)
	Example (2)

	Multi Line Comments
	Example
	Example (1)


	Python Variables
	Variables
	Creating Variables
	Example
	Example (1)

	Casting
	Example

	Get the Type
	Example

	Single or Double Quotes?
	Example

	Case-Sensitive
	Example


	Python - Variable Names
	Variable Names
	Example
	Example (1)

	Multi Words Variable Names
	Camel Case
	One Value to Multiple Variables
	Example

	Unpack a Collection
	Example


	Python - Output Variables
	Output Variables
	Example
	Example (1)
	Example (2)
	Example (3)
	Example (4)
	Example (5)

	Global Variables
	Example
	Example (1)

	The global Keyword
	Example
	Example (1)


	Python Data Types
	Built-in Data Types
	Getting the Data Type
	Example

	Setting the Data Type

	Python Numbers
	Example
	Example (1)
	Int
	Example

	Float
	Example
	Example (1)

	Complex
	Example

	Type Conversion
	Example

	Random Number
	Example

	Assign String to a Variable
	Example

	Multiline Strings
	Example
	Example (1)

	Strings are Arrays
	Example

	Looping Through a String
	Example

	String Length
	Example


	Python - Slicing Strings
	Example
	Slice From the Start
	Example

	Slice To the End
	Example

	Negative Indexing
	Example


	Python - Modify Strings
	Upper Case
	Example

	Lower Case
	Example

	Replace String
	Example

	Split String
	Example

	String Methods
	String Concatenation
	Example
	Example (1)


	Python - Format - Strings
	String Format
	Example
	Example (1)
	Example (2)
	Example (3)


	Python - Escape Characters
	Escape Character
	Example
	Example (1)

	Escape Characters

	Python - String Methods
	String Methods
	Boolean Values
	Example
	Example (1)

	Evaluate Values and Variables
	Example
	Example (1)


	Python Operators
	Python Operators
	Example

	Python Arithmetic Operators
	Python Assignment Operators
	Python Comparison Operators
	Python Logical Operators
	Python Identity Operators
	Python Membership Operators
	Python Bitwise Operators

	Python Lists
	List
	Example

	List Items
	Ordered
	Changeable
	Allow Duplicates
	Example

	List Length
	Example

	List Items - Data Types
	Example
	Example (1)


	Python - Access List Items
	Access Items
	Example
	Negative Indexing
	Example (1)
	Range of Indexes
	Example (2)
	Example (3)
	Example (4)

	Insert Items
	Example


	Python - Add List Items
	Append Items
	Example

	Insert Items
	Example

	Extend List
	Example

	Remove Specified Item
	Example

	Remove Specified Index
	Example
	Example (1)
	Example (2)
	Example (3)

	Sort List Alphanumerically
	Example
	Example (1)


	Python - List Methods
	List Methods
	Tuple
	Example

	Tuple Items
	Ordered
	Unchangeable
	Allow Duplicates
	Example

	Tuple Length
	Example

	Create Tuple With One Item
	Example

	Tuple Items - Data Types
	Example
	Example (1)


	Python - Access Tuple Items
	Access Tuple Items
	Example

	Negative Indexing
	Example

	Range of Indexes
	Example

	Range of Negative Indexes
	Example

	Check if Item Exists
	Example


	Python - Update Tuples
	Change Tuple Values
	Example


	Python Sets
	Set
	Example

	Set Items
	Unordered
	Unchangeable
	Duplicates Not Allowed
	Example

	Get the Length of a Set
	Example

	Set Items - Data Types
	Example
	Example (1)

	Access Items
	Example
	Example (1)


	Python - Add Set Items
	Add Items
	Example

	Add Sets
	Example


	Python - Remove Set Items
	Remove Item
	Example
	Example (1)
	Example (2)
	Example (3)

	Set Methods

	Python Dictionaries
	Dictionary
	Example

	Ordered or Unordered?
	Changeable
	Duplicates Not Allowed
	Example


	Python - Access Dictionary Items
	Accessing Items
	Example
	Example (1)

	Get Keys
	Example
	Example (1)

	Get Values
	Example
	Example (1)
	Example (2)

	Get Items
	Example
	Example (1)
	Example (2)

	Check if Key Exists
	Example


	Python - Change Dictionary Items
	Change Values
	Example

	Update Dictionary
	Example

	Removing Items
	Example
	Example (1)
	Example (2)
	Example (3)
	Example (4)

	Dictionary Methods
	Python Conditions and If statements
	Example

	Indentation
	Example

	Elif
	Example

	Else
	Example
	Example (1)

	Nested If
	Example

	The pass Statement
	Example


	Python While Loops
	Python Loops
	The while Loop
	Example

	The break Statement
	Example

	The continue Statement
	Example

	The else Statement
	Example

	Python For Loops
	Example

	Looping Through a String
	Example

	The break Statement (1)
	Example
	Example (1)

	The continue Statement (1)
	Example

	The range() Function
	Example
	Example (1)
	Example (2)

	Else in For Loop
	Example
	Example (1)

	Nested Loops
	Example

	The pass Statement
	Example


	Python Functions
	Creating a Function
	Example

	Calling a Function
	Example

	Arguments
	Example

	Parameters or Arguments?
	Number of Arguments
	Example
	Example (1)

	Keyword Arguments
	Example

	efault Parameter Value
	Example

	Passing a List as an Argument
	Example

	Return Values
	Example

	The pass Statement
	Example

	Recursion
	Example


	UNIT -2
	CONTROL STATEMENTS :Looping Statements
	– for
	(indefinite iteration).
	• Executing a Statement a Given Number of Times
	Count-Controlled Loops:
	for <variable> in range(<lower bound>, <upper bound + 1>):
	Loop Errors: Off-by-One Error:
	Traversing the Contents of a Data Sequence:
	for <variable> in <sequence>:
	Specifying the Steps in the Range :
	Loops That Count Down
	2. Conditional Iteration: The while Loop
	• The Structure and Behavior of a while Loop :
	• Syntax:
	<sequence of statements>
	The while True Loop and the break Statement
	while True:
	print(number) # Just echo the valid input break
	else:
	OUTPUT
	Random Numbers
	3. Formatting Text for output
	FORMATTING STRING:
	<format string> % <datum>
	FORMATTING INTEGERS:
	<format string> % (<datum–1>, ..., <datum–n>)
	WITH FORMATTING (integers):
	FORMATTING FLOAT:
	%<field width>.<precision>f
	4. Strings
	Accessing Character and Substring in Strings The Structure of Strings:
	>>> len("Hi there!") 9
	The Subscript Operator:
	<a string>[<integer or index>]
	Slicing for Substrings :
	slicing.
	Testing for a Substring with the in Operator:
	5. Strings and Number Systems
	The Positional System for Representing Numbers
	Converting Binary to Decimal
	• Python script to convert binary number to decimal number bitString = input("Enter a string of bits: ")
	exponent = len(bitString) - 1 for digit in bitString:
	decimal = decimal + int(digit) * 2 ** exponent
	exponent = exponent - 1
	Converting Decimal to Binary:
	Python script to convert decimal number to binary number decimal = int(input("Enter a decimal integer: "))
	print(0)
	print("Quotient Remainder Binary") bitString = ""
	remainder = decimal % 2 decimal = decimal // 2
	print("The binary representation is", bitString)
	Octal Numbers
	Hexadecimal Numbers:
	5 String Methods :
	6) Data Encryption
	Caesar cipher:
	Python Script to encrypt plain text to cipher text using Caesar Cipher
	OUTPUT :
	Python Script to encrypt cipher text to plain text using Caesar Cipher
	OUTPUT : (1)
	Block cipher:
	LISTS , DICTIONARIES, FUNCTIONS AND MODULES
	Lists :
	List Literals and Basic Operators :
	List Methods :
	• pop() :
	• Searching a List
	3
	• Sorting a List :
	NOTE:
	Dictionaries:
	• In Python, a dictionary associates a set of keys with values.
	Dictionary Literals:
	Adding Keys and Replacing Values :
	Accessing Values :
	Removing Keys :
	Traversing a Dictionary :
	Dictionary Operations :
	Conversion of hexadecimal to Binary:
	FUNCTIONS:
	Functions as Abstraction Mechanisms
	Functions Eliminate Redundancy
	def summation(lower, upper): result = 0
	result += lower lower += 1
	Functions Hide Complexity
	Functions Support General Methods with Systematic Variations
	Functions Support the Division of Labor
	2 . Problem Solving with Top-Down Design
	The Design of the Text-Analysis Program
	Structure chart
	3 . Design with Recursive Functions
	Defining a Recursive Function :
	Using Recursive Definitions to Construct Recursive Functions
	Fib(n) = 1, when n = 1 or n = 2
	Infinite Recursion:
	The Costs and Benefits of Recursion :
	4. Case Study Gathering Information from a File System
	Request:
	Analysis:
	5. Managing a Program’s Namespace
	i) The Built-In Namespace
	ii) The Global Namespace
	iii) The Local and Enclosing Namespaces
	Output :
	Scope:
	Lifetime:
	• Using Keywords for Default and Optional Arguments:
	def <function name>(<required arguments>, <key-1> = <val-1>, ... <key-n> =
	6. Anonomyous Function or Lambda function:
	lambda arguments: expression
	EXAMPLE 1:
	EXAMPLE 2 :Lambda with filter():
	EXAMPLE 3: Lambda with map():
	7. Higher Order Functions
	map() :
	• Syntax :
	• Parameters :
	Output:
	 filter()
	• Syntax:
	• Parameters:
	OUTPUT :
	 reduce() :
	>>> from functools import reduce
	8. Modules in Python:
	User defined module :
	Syntax:
	ii) from….import statement:
	Example program:
	9. Packages in Python:
	Creating a Package:
	greet.py
	functions.py
	init .py :

	Syllabus:
	Files in Python:
	Opening and Closing Files
	Here are parameter details –
	Here is a list of the different modes of opening a file –
	Here is a list of all attributes related to file object −

	The close () Method
	Example:

	Reading and Writing Files
	Understanding write () and writelines ()
	Example:

	The writelines () method:
	Parameters
	Example

	Understanding read (), readline () and readlines ():
	Example

	The readline () Method
	Parameters
	Return Value
	Example

	The readlines () Method
	Parameters
	Return Value
	Example

	Manipulating file pointer using seek():
	Example:
	Parameters:
	Example: (1)

	File processing operations:
	Example:
	Example: (1)
	os.mkdir(‘python’) # Creates python named directory
	Example: (2)
	os.rmdir(‘python’) # removes python named directory
	Example: (3)
	os.chdir(‘D:\>’) # change directory to D drive
	Example: (4)
	os.remove(‘python,txt’) # removes python.txt named file
	Example: (5)
	os.getcwd( ) # it gives current working directory
	Creating and writing config file in Python
	Program:
	Reading a key from config file:
	Program: (1)
	UNIT-4 PART-2
	Introduction
	Overview of OOP Terminology
	Benefits of OOP
	Classes:
	Defining a class:
	Syntax :
	Syntax of object creation:
	Example :
	self variable and class methods:
	Example 1 :
	Constructor method:
	Creating a constructor: (The name of the constructor is always the _ _init_ _().)
	Output:
	Destructor:
	Output: (1)
	Inheritance:
	Types of inheritance:
	Single Inheritance:
	Multiple Inheritance:
	Multi-Level Inheritance:
	Multi Path Inheritance:
	Polymorphism:
	Polymorphism in operators
	Example: (6)
	Polymorphism in built-in functions
	Polymorphism in inheritance:
	Super():
	OUTPUT:
	Case Study An ATM:
	Adding and retrieving dynamic attributes of classes:
	Example: (7)

	UNIT 5 PART -1
	EXCEPTION HANDLING
	Errors:
	Exceptions:
	Handling Exceptions:
	The syntax for try–except block can be given as
	Multiple except blocks:

	(OR)
	OUTPUT :
	Raising Exceptions:
	The general syntax for the raise statement is
	OUTPUT:
	Defining clean-up actions(The finally Block)
	Syntax:
	OUTPUT: (1)
	Built-in and User-defined Exceptions:
	User –defined exception:
	Example:
	OUTPUT: (2)

	UNIT 5 PART-II
	Graphical User Interface:
	Tkinter Programming
	Example:
	Tkinter Widgets:
	Standard attributes for widgets
	Geometry Management:
	1) Creation of a window/widget
	Program:
	2) Creating a window with specific dimensions and a label
	Program
	3) Adding a Button to window/widget
	Program: (1)
	4) Creating 2 text fields to enter 2 numbers, and a button when clicked gives sum of the 2 numbers and displays it in 3rd text field
	Program: (2)
	5) Creating 2 checkboxes
	6) Creating 3 radio buttons
	7) Creating a message box on clicking a button
	8) Creating various message boxes
	9) Creating a Spinbox
	Introduction to programming concepts of scratch
	Sprites
	Sequences
	Iteration (looping)
	Conditional statements
	Variables
	Lists (arrays)
	Event Handling
	Threads
	Coordination & Synchronisation
	Keyboard input
	Boolean logic
	User interface design


